# 2.1 Machine learning lecture 2 course notes  (Page 3/6)

 Page 3 / 6
$\begin{array}{ccc}\hfill \Phi & =& \frac{1}{m}\sum _{i=1}^{m}1\left\{{y}^{\left(i\right)}=1\right\}\hfill \\ \hfill {\mu }_{0}& =& \frac{{\sum }_{i=1}^{m}1\left\{{y}^{\left(i\right)}=0\right\}{x}^{\left(i\right)}}{{\sum }_{i=1}^{m}1\left\{{y}^{\left(i\right)}=0\right\}}\hfill \\ \hfill {\mu }_{1}& =& \frac{{\sum }_{i=1}^{m}1\left\{{y}^{\left(i\right)}=1\right\}{x}^{\left(i\right)}}{{\sum }_{i=1}^{m}1\left\{{y}^{\left(i\right)}=1\right\}}\hfill \\ \hfill \Sigma & =& \frac{1}{m}\sum _{i=1}^{m}\left({x}^{\left(i\right)}-{\mu }_{{y}^{\left(i\right)}}\right){\left({x}^{\left(i\right)}-{\mu }_{{y}^{\left(i\right)}}\right)}^{T}.\hfill \end{array}$

Pictorially, what the algorithm is doing can be seen in as follows:

Shown in the figure are the training set, as well as the contours of the two Gaussian distributions that have been fit to the data in each of thetwo classes. Note that the two Gaussians have contours that are the same shape and orientation, since they share a covariance matrix $\Sigma$ , but they have different means ${\mu }_{0}$ and ${\mu }_{1}$ . Also shown in the figure is the straight line giving the decision boundary at which $p\left(y=1|x\right)=0.5$ . On one side of the boundary, we'll predict $y=1$ to be the most likely outcome, and on the other side, we'll predict $y=0$ .

## Discussion: gda and logistic regression

The GDA model has an interesting relationship to logistic regression. If we view the quantity $p\left(y=1|x;\Phi ,{\mu }_{0},{\mu }_{1},\Sigma \right)$ as a function of $x$ , we'll find that it can be expressed in the form

$p\left(y=1|x;\Phi ,\Sigma ,{\mu }_{0},{\mu }_{1}\right)=\frac{1}{1+exp\left(-{\theta }^{T}x\right)},$

where $\theta$ is some appropriate function of $\Phi ,\Sigma ,{\mu }_{0},{\mu }_{1}$ . This uses the convention of redefining the ${x}^{\left(i\right)}$ 's on the right-hand-side to be $n+1$ -dimensional vectors by adding the extra coordinate ${x}_{0}^{\left(i\right)}=1$ ; see problem set 1. This is exactly the form that logistic regression—a discriminative algorithm—used to model $p\left(y=1|x\right)$ .

When would we prefer one model over another? GDA and logistic regression will, in general, give different decision boundaries when trained on the same dataset. Which is better?

We just argued that if $p\left(x|y\right)$ is multivariate gaussian (with shared $\Sigma$ ), then $p\left(y|x\right)$ necessarily follows a logistic function. The converse, however, is not true; i.e., $p\left(y|x\right)$ being a logistic function does not imply $p\left(x|y\right)$ is multivariate gaussian. This shows that GDA makes stronger modeling assumptions about the data than does logistic regression. It turns out that when these modelingassumptions are correct, then GDA will find better fits to the data, and is a better model. Specifically, when $p\left(x|y\right)$ is indeed gaussian (with shared $\Sigma$ ), then GDA is asymptotically efficient . Informally, this means that in the limit of very large training sets (large $m$ ), there is no algorithm that is strictly better than GDA (in terms of, say, how accurately they estimate $p\left(y|x\right)$ ). In particular, it can be shown that in this setting, GDA will be a better algorithm than logistic regression; and more generally,even for small training set sizes, we would generally expect GDA to better.

In contrast, by making significantly weaker assumptions, logistic regression is also more robust and less sensitive to incorrect modeling assumptions. There are many different sets of assumptions that would lead to $p\left(y|x\right)$ taking the form of a logistic function. For example, if $x|y=0\sim \mathrm{Poisson}\left({\lambda }_{0}\right)$ , and $x|y=1\sim \mathrm{Poisson}\left({\lambda }_{1}\right)$ , then $p\left(y|x\right)$ will be logistic. Logistic regression will also work well on Poisson data like this. But if we were to use GDA on such data—and fit Gaussian distributions tosuch non-Gaussian data—then the results will be less predictable, and GDA may (or may not) do well.

To summarize: GDA makes stronger modeling assumptions, and is more data efficient (i.e., requires less training data to learn “well”)when the modeling assumptions are correct or at least approximately correct. Logistic regression makes weaker assumptions, and is significantly more robust to deviationsfrom modeling assumptions. Specifically, when the data is indeed non-Gaussian, then in the limit of large datasets, logistic regression will almost always do better thanGDA. For this reason, in practice logistic regression is used more often than GDA. (Some related considerations about discriminative vs. generative models also apply forthe Naive Bayes algorithm that we discuss next, but the Naive Bayes algorithm is still considered a very good, and is certainly also a very popular, classification algorithm.)

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!