<< Chapter < Page Chapter >> Page >

Generative learning algorithms

So far, we've mainly been talking about learning algorithms that model p ( y | x ; θ ) , the conditional distribution of y given x . For instance, logistic regression modeled p ( y | x ; θ ) as h θ ( x ) = g ( θ T x ) where g is the sigmoid function. In these notes, we'll talk about a different type of learning algorithm.

Consider a classification problem in which we want to learn to distinguish between elephants ( y = 1 ) and dogs ( y = 0 ), based on some features of an animal. Given a training set, an algorithm like logistic regression or the perceptron algorithm (basically) tries to find a straight line—that is, a decision boundary—that separates the elephants anddogs. Then, to classify a new animal as either an elephant or a dog, it checks on which side of the decision boundary it falls, and makes its prediction accordingly.

Here's a different approach. First, looking at elephants, we can build a model of what elephants look like. Then, looking at dogs, we can build a separate model of whatdogs look like. Finally, to classify a new animal, we can match the new animal against the elephant model, and match it against the dog model, to see whether the new animal looks morelike the elephants or more like the dogs we had seen in the training set.

Algorithms that try to learn p ( y | x ) directly (such as logistic regression), or algorithms that try to learn mappings directly from the space of inputs X to the labels { 0 , 1 } , (such as the perceptron algorithm) are called discriminative learning algorithms. Here, we'll talk about algorithms that instead try to model p ( x | y ) (and p ( y ) ). These algorithms are called generative learning algorithms. For instance, if y indicates whether an example is a dog (0) or an elephant (1), then p ( x | y = 0 ) models the distribution of dogs' features, and p ( x | y = 1 ) models the distribution of elephants' features.

After modeling p ( y ) (called the class priors ) and p ( x | y ) , our algorithm can then use Bayes rule to derive the posterior distribution on y given x :

p ( y | x ) = p ( x | y ) p ( y ) p ( x ) .

Here, the denominator is given by p ( x ) = p ( x | y = 1 ) p ( y = 1 ) + p ( x | y = 0 ) p ( y = 0 ) (you should be able to verify that this is true from the standard properties of probabilities), and thus canalso be expressed in terms of the quantities p ( x | y ) and p ( y ) that we've learned. Actually, if were calculating p ( y | x ) in order to make a prediction, then we don't actually need to calculate the denominator, since

arg max y p ( y | x ) = arg max y p ( x | y ) p ( y ) p ( x ) = arg max y p ( x | y ) p ( y ) .

Gaussian discriminant analysis

The first generative learning algorithm that we'll look at is Gaussian discriminant analysis (GDA). In this model, we'll assume that p ( x | y ) is distributed according to a multivariate normal distribution. Let's talk briefly about the properties ofmultivariate normal distributions before moving on to the GDA model itself.

The multivariate normal distribution

The multivariate normal distribution in n -dimensions, also called the multivariate Gaussian distribution, is parameterized by a mean vector μ R n and a covariance matrix Σ R n × n , where Σ 0 is symmetric and positive semi-definite. Also written “ N ( μ , Σ ) ”, its density is given by:

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
is it a question of log
I rally confuse this number And equations too I need exactly help
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?