<< Chapter < Page Chapter >> Page >

By inspection it would appear that the proper value of l o g 2 ( f s Δ f ) = l o g 2 N is 8, 9, or 10. Assuming a nominal value of 9, we can use [link] to accurately estimate the optimum value of f s . Performing this calculation yields 437 kHz. In the actual design, this value was rounded up to 512 kHz, the next-higher power-of-two integer multiple of 4 kHz. The choice of f s = 512 kHz in turn means that the tuner decimation M t must equal 4 and the tuner's pulse response duration L t must equal at least 20.

The resulting tuner/transmultiplexer, shown in [link] and described in [link] , was built on a single circuit card. The 12-bit A/D module was mounted separately in the chassis. One multiplier chip operating at 4.096 megamultiplies/sec performed the tuner's quadrature downconversion. Two multiplier-accumulators (MACs) filtered and decimated the downconverted signal, preserving the center 248 kHz. Two more MACs perform the window-and-fold preprocessing for the transmultiplexer while a single MAC is used to compute the radix-2 FFT. Seven stages are used to compute the 128-point FFT and an additional one is used to perform sideband inversion on those voice channels designated by the user. This transmultiplexer also happens to use the so-called offset-bin DFT instead of the usual DFT. The motivation for this and the method for implementing it are discussed in Offset Bin Operation from "An Introduction to the FDM-TDM Digital Transmultiplexer: Appendix B" .

Design of the fsk vft telegraphy demodulator

The section "Example: Using an FDM-TDM Transmux to Demodulate R.35 Telgraphy Signals" discussed the use of an FDM-to-TDM transmultiplexer as an integral part of a demodulator capable of handling all 24 FSK signals present in an FDM voice frequency telegraphy (VFT) system. The analysis developed in that section showed that, in absence of other system-level factors, the best input sampling rate to the transmux-based filter bank was 3840 Hz, 64 times the 60 Hz fundamental tone spacing in the R.35 standard. In this section, we re-examine that choice in terms of the tuner required to provide the VFT signal to the transmultiplexer.

To pass all 24 FSK components of an R.35 VFT signal, the tuner must have a passband B t of slightly more than 2880 Hz. The system must be able to accept real-valued digital samples from a commercial PCM link. These are provided at a rate of 8000 samples/sec This demodulator was also capable of digitizing real-valued analog inputs at a rate of 16 kHz. . From the section "Example: Using an FDM-TDM Transmux to Demodulate R.35 Telegraphy Signals" we recall that the other key parameters in the filter bank's design are: Q = 3 , M = 12 (assuming the input rate is 3840 Hz), K = 16 3 , and N = 64 . Using the values in [link] , and assuming a nominal value of 2.5 for α t , yields 3920 Hz as the optimal value of fs . This is very close to the best choice without taking the tuner into account. We therefore fix on 3840 Hz as the overall best choice.

Figure four is a photograph of a supergroup tuner and transmultiplexer.
Photograph of a Supergroup Tuner and Transmultiplexer [link] , circa 1985- M = 32 , Q = 16 , N = 128 , Δ f = 4 kHz

Questions & Answers

a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
f(n)= 2n + 1
Samantha Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, An introduction to the fdm-tdm digital transmultiplexer. OpenStax CNX. Nov 16, 2010 Download for free at http://cnx.org/content/col11165/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An introduction to the fdm-tdm digital transmultiplexer' conversation and receive update notifications?