<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Find the common difference for an arithmetic sequence.
  • Write terms of an arithmetic sequence.
  • Use a recursive formula for an arithmetic sequence.
  • Use an explicit formula for an arithmetic sequence.

Companies often make large purchases, such as computers and vehicles, for business use. The book-value of these supplies decreases each year for tax purposes. This decrease in value is called depreciation. One method of calculating depreciation is straight-line depreciation, in which the value of the asset decreases by the same amount each year.

As an example, consider a woman who starts a small contracting business. She purchases a new truck for $25,000. After five years, she estimates that she will be able to sell the truck for $8,000. The loss in value of the truck will therefore be $17,000, which is $3,400 per year for five years. The truck will be worth $21,600 after the first year; $18,200 after two years; $14,800 after three years; $11,400 after four years; and $8,000 at the end of five years. In this section, we will consider specific kinds of sequences that will allow us to calculate depreciation, such as the truck’s value.

Finding common differences

The values of the truck in the example are said to form an arithmetic sequence because they change by a constant amount each year. Each term increases or decreases by the same constant value called the common difference of the sequence. For this sequence, the common difference is –3,400.

A sequence, {25000, 21600, 18200, 14800, 8000}, that shows the terms differ only by -3400.

The sequence below is another example of an arithmetic sequence. In this case, the constant difference is 3. You can choose any term    of the sequence    , and add 3 to find the subsequent term.

A sequence {3, 6, 9, 12, 15, ...} that shows the terms only differ by 3.

Arithmetic sequence

An arithmetic sequence    is a sequence that has the property that the difference between any two consecutive terms is a constant. This constant is called the common difference    . If a 1 is the first term of an arithmetic sequence and d is the common difference, the sequence will be:

{ a n } = { a 1 , a 1 + d , a 1 + 2 d , a 1 + 3 d , ... }

Finding common differences

Is each sequence arithmetic? If so, find the common difference.

  1. { 1 , 2 , 4 , 8 , 16 , ... }
  2. { 3 , 1 , 5 , 9 , 13 , ... }

Subtract each term from the subsequent term to determine whether a common difference exists.

  1. The sequence is not arithmetic because there is no common difference.

  2. The sequence is arithmetic because there is a common difference. The common difference is 4.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

If we are told that a sequence is arithmetic, do we have to subtract every term from the following term to find the common difference?

No. If we know that the sequence is arithmetic, we can choose any one term in the sequence, and subtract it from the subsequent term to find the common difference.

Is the given sequence arithmetic? If so, find the common difference.

{ 18 ,   16 ,   14 ,   12 ,   10 , }

The sequence is arithmetic. The common difference is 2.

Got questions? Get instant answers now!

Is the given sequence arithmetic? If so, find the common difference.

{ 1 ,   3 ,   6 ,   10 ,   15 , }

The sequence is not arithmetic because 3 1 6 3.

Got questions? Get instant answers now!

Writing terms of arithmetic sequences

Now that we can recognize an arithmetic sequence, we will find the terms if we are given the first term and the common difference. The terms can be found by beginning with the first term and adding the common difference repeatedly. In addition, any term can also be found by plugging in the values of n and d into formula below.

Questions & Answers

can I see the picture
Zairen Reply
How would you find if a radical function is one to one?
Peighton Reply
how to understand calculus?
Jenica Reply
with doing calculus
Thanks po.
Hey I am new to precalculus, and wanted clarification please on what sine is as I am floored by the terms in this app? I don't mean to sound stupid but I have only completed up to college algebra.
rachel Reply
I don't know if you are looking for a deeper answer or not, but the sine of an angle in a right triangle is the length of the opposite side to the angle in question divided by the length of the hypotenuse of said triangle.
can you give me sir tips to quickly understand precalculus. Im new too in that topic. Thanks
if you remember sine, cosine, and tangent from geometry, all the relationships are the same but they use x y and r instead (x is adjacent, y is opposite, and r is hypotenuse).
it is better to use unit circle than triangle .triangle is only used for acute angles but you can begin with. Download any application named"unit circle" you find in it all you need. unit circle is a circle centred at origine (0;0) with radius r= 1.
What is domain
the standard equation of the ellipse that has vertices (0,-4)&(0,4) and foci (0, -15)&(0,15) it's standard equation is x^2 + y^2/16 =1 tell my why is it only x^2? why is there no a^2?
Reena Reply
what is foci?
Reena Reply
This term is plural for a focus, it is used for conic sections. For more detail or other math questions. I recommend researching on "Khan academy" or watching "The Organic Chemistry Tutor" YouTube channel.
how to determine the vertex,focus,directrix and axis of symmetry of the parabola by equations
Bryssen Reply
i want to sure my answer of the exercise
meena Reply
what is the diameter of(x-2)²+(y-3)²=25
Den Reply
how to solve the Identity ?
Barcenas Reply
what type of identity
Confunction Identity
how to solve the sums
hello guys
For each year t, the population of a forest of trees is represented by the function A(t) = 117(1.029)t. In a neighboring forest, the population of the same type of tree is represented by the function B(t) = 86(1.025)t.
Shakeena Reply
by how many trees did forest "A" have a greater number?
how solve standard form of polar
Rhudy Reply
what is a complex number used for?
Drew Reply
It's just like any other number. The important thing to know is that they exist and can be used in computations like any number.
I would like to add that they are used in AC signal analysis for one thing
Good call Scott. Also radar signals I believe.
They are used in any profession where the phase of a waveform has to be accounted for in the calculations. Imagine two electrical signals in a wire that are out of phase by 90°. At some times they will interfere constructively, others destructively. Complex numbers simplify those equations
Is there any rule we can use to get the nth term ?
Anwar Reply
how do you get the (1.4427)^t in the carp problem?
Gabrielle Reply
Practice Key Terms 2

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?