<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Find the common difference for an arithmetic sequence.
  • Write terms of an arithmetic sequence.
  • Use a recursive formula for an arithmetic sequence.
  • Use an explicit formula for an arithmetic sequence.

Companies often make large purchases, such as computers and vehicles, for business use. The book-value of these supplies decreases each year for tax purposes. This decrease in value is called depreciation. One method of calculating depreciation is straight-line depreciation, in which the value of the asset decreases by the same amount each year.

As an example, consider a woman who starts a small contracting business. She purchases a new truck for $25,000. After five years, she estimates that she will be able to sell the truck for $8,000. The loss in value of the truck will therefore be $17,000, which is $3,400 per year for five years. The truck will be worth $21,600 after the first year; $18,200 after two years; $14,800 after three years; $11,400 after four years; and $8,000 at the end of five years. In this section, we will consider specific kinds of sequences that will allow us to calculate depreciation, such as the truck’s value.

Finding common differences

The values of the truck in the example are said to form an arithmetic sequence because they change by a constant amount each year. Each term increases or decreases by the same constant value called the common difference of the sequence. For this sequence, the common difference is –3,400.

A sequence, {25000, 21600, 18200, 14800, 8000}, that shows the terms differ only by -3400.

The sequence below is another example of an arithmetic sequence. In this case, the constant difference is 3. You can choose any term    of the sequence    , and add 3 to find the subsequent term.

A sequence {3, 6, 9, 12, 15, ...} that shows the terms only differ by 3.

Arithmetic sequence

An arithmetic sequence    is a sequence that has the property that the difference between any two consecutive terms is a constant. This constant is called the common difference    . If a 1 is the first term of an arithmetic sequence and d is the common difference, the sequence will be:

{ a n } = { a 1 , a 1 + d , a 1 + 2 d , a 1 + 3 d , ... }

Finding common differences

Is each sequence arithmetic? If so, find the common difference.

  1. { 1 , 2 , 4 , 8 , 16 , ... }
  2. { 3 , 1 , 5 , 9 , 13 , ... }

Subtract each term from the subsequent term to determine whether a common difference exists.

  1. The sequence is not arithmetic because there is no common difference.

  2. The sequence is arithmetic because there is a common difference. The common difference is 4.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

If we are told that a sequence is arithmetic, do we have to subtract every term from the following term to find the common difference?

No. If we know that the sequence is arithmetic, we can choose any one term in the sequence, and subtract it from the subsequent term to find the common difference.

Is the given sequence arithmetic? If so, find the common difference.

{ 18 ,   16 ,   14 ,   12 ,   10 , }

The sequence is arithmetic. The common difference is 2.

Got questions? Get instant answers now!

Is the given sequence arithmetic? If so, find the common difference.

{ 1 ,   3 ,   6 ,   10 ,   15 , }

The sequence is not arithmetic because 3 1 6 3.

Got questions? Get instant answers now!

Writing terms of arithmetic sequences

Now that we can recognize an arithmetic sequence, we will find the terms if we are given the first term and the common difference. The terms can be found by beginning with the first term and adding the common difference repeatedly. In addition, any term can also be found by plugging in the values of n and d into formula below.

Questions & Answers

preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
A hedge is contrusted to be in the shape of hyperbola near a fountain at the center of yard.the hedge will follow the asymptotes y=x and y=-x and closest distance near the distance to the centre fountain at 5 yards find the eqution of the hyperbola
ayesha Reply
A doctor prescribes 125 milligrams of a therapeutic drug that decays by about 30% each hour. To the nearest hour, what is the half-life of the drug?
Sandra Reply
Find the domain of the function in interval or inequality notation f(x)=4-9x+3x^2
prince Reply
hello
Jessica Reply
Outside temperatures over the course of a day can be modeled as a sinusoidal function. Suppose the high temperature of ?105°F??105°F? occurs at 5PM and the average temperature for the day is ?85°F.??85°F.? Find the temperature, to the nearest degree, at 9AM.
Karlee Reply
if you have the amplitude and the period and the phase shift ho would you know where to start and where to end?
Jean Reply
rotation by 80 of (x^2/9)-(y^2/16)=1
Garrett Reply
thanks the domain is good but a i would like to get some other examples of how to find the range of a function
bashiir Reply
what is the standard form if the focus is at (0,2) ?
Lorejean Reply
a²=4
Roy Reply
hil
Roy Reply
hi
Roy Reply
A bridge is to be built in the shape of a semi-elliptical arch and is to have a span of 120 feet. The height of the arch at a distance of 40 feet from the center is to be 8 feet. Find the height of the arch at its center
Abdulfatah Reply
Practice Key Terms 2

Get the best Precalculus course in your pocket!





Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask