<< Chapter < Page Chapter >> Page >

Sampling, aliasing, quantization and reconstruction

The example in this section addresses sampling, quantization, aliasing and signal reconstruction concepts. [link] shows the completed block diagram of this example, where the following four control parameters are linked to a LabVIEW MathScript node:

Amplitude – to control the amplitude of an input sine wave

Phase – to control the phase of the input signal

Frequency – to control the frequency of the input signal

Sampling frequency – to control the sampling rate of the corresponding discrete signal

Number of quantization levels – to control the number of quantization levels of the corresponding digital signal

To simulate the analog signal via a .m file, consider a very small value of time increment dt (dt = 0.001). To create a discrete signal, sample the analog signal at a rate controlled by the sampling frequency. To simulate the analog signal, use the textual statement xa=sin(2*pi*f*t) , where t is a vector with increment dt = 0.001. To simulate the discrete signal, use the textual statement xd=sin(2*pi*f*n) , where n is a vector with increment dn. The ratio dn/dt indicates the number of samples skipped during the sampling process. Again, the ratio of analog frequency to sampling frequency is known as digital or normalized frequency. To convert the discrete signal into a digital one, perform quantization using the LabVIEW MathScript function round . Set the number of quantization levels as a control.

To reconstruct the analog signal from the digital one, use a linear interpolation technique via the LabVIEW MathScript function interp 1 . The samples skipped during the sampling process can be recovered after the interpolation. Finally, display the Original signal and the Reconstructed signal in the same graph using the functions Build Waveform, Merge Signal and Waveform Graph. Discrete waveform, Digital waveform, Analog frequency, Digital frequency and Number of samples skipped in ADC are also included in the front panel, shown in [link] . Use this VI to examine proper signal sampling and reconstruction.

Block Diagram of Sampling, Aliasing, Quantization and Reconstruction

Front Panel of Sampling, Aliasing, Quantization and Reconstruction

Analog and digital frequency

Digital frequency ( θ size 12{θ} {} ) is related to analog frequency ( f size 12{f} {} ) via the sampling frequency, that is, θ = 2πf f s size 12{θ= { {2πf} over {f rSub { size 8{s} } } } } {} . Therefore, one can choose the sampling frequency ( f s size 12{f rSub { size 8{s} } } {} ) to increase the digital or normalized frequency of an analog signal by lowering the number of samples.

Aliasing

Set the sampling frequency to f s = 100 size 12{f rSub { size 8{s} } ="100"} {} Hz and change the analog frequency of the signal. Observe the output for f s = 10 size 12{f rSub { size 8{s} } ="10"} {} Hz and f s = 210 size 12{f rSub { size 8{s} } ="210"} {} Hz (See [link] and [link] ). The analog signals appear entirely different in these two cases but the discrete signals are similar. For the second case, the sampling frequency is less than twice that of the analog signal frequency. This violates the Nyquist sampling rate leading to aliasing, which means one does not know from which analog signal the digital signal is created. Note the value of digital frequency is 0.1 radians for the first case and 2.1 radians for the second case. To prevent any aliasing, keep the digital frequency less than 0.5 radians.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?

Ask