<< Chapter < Page Chapter >> Page >

Sampling, aliasing, quantization and reconstruction

The example in this section addresses sampling, quantization, aliasing and signal reconstruction concepts. [link] shows the completed block diagram of this example, where the following four control parameters are linked to a LabVIEW MathScript node:

Amplitude – to control the amplitude of an input sine wave

Phase – to control the phase of the input signal

Frequency – to control the frequency of the input signal

Sampling frequency – to control the sampling rate of the corresponding discrete signal

Number of quantization levels – to control the number of quantization levels of the corresponding digital signal

To simulate the analog signal via a .m file, consider a very small value of time increment dt (dt = 0.001). To create a discrete signal, sample the analog signal at a rate controlled by the sampling frequency. To simulate the analog signal, use the textual statement xa=sin(2*pi*f*t) , where t is a vector with increment dt = 0.001. To simulate the discrete signal, use the textual statement xd=sin(2*pi*f*n) , where n is a vector with increment dn. The ratio dn/dt indicates the number of samples skipped during the sampling process. Again, the ratio of analog frequency to sampling frequency is known as digital or normalized frequency. To convert the discrete signal into a digital one, perform quantization using the LabVIEW MathScript function round . Set the number of quantization levels as a control.

To reconstruct the analog signal from the digital one, use a linear interpolation technique via the LabVIEW MathScript function interp 1 . The samples skipped during the sampling process can be recovered after the interpolation. Finally, display the Original signal and the Reconstructed signal in the same graph using the functions Build Waveform, Merge Signal and Waveform Graph. Discrete waveform, Digital waveform, Analog frequency, Digital frequency and Number of samples skipped in ADC are also included in the front panel, shown in [link] . Use this VI to examine proper signal sampling and reconstruction.

Block Diagram of Sampling, Aliasing, Quantization and Reconstruction

Front Panel of Sampling, Aliasing, Quantization and Reconstruction

Analog and digital frequency

Digital frequency ( θ size 12{θ} {} ) is related to analog frequency ( f size 12{f} {} ) via the sampling frequency, that is, θ = 2πf f s size 12{θ= { {2πf} over {f rSub { size 8{s} } } } } {} . Therefore, one can choose the sampling frequency ( f s size 12{f rSub { size 8{s} } } {} ) to increase the digital or normalized frequency of an analog signal by lowering the number of samples.


Set the sampling frequency to f s = 100 size 12{f rSub { size 8{s} } ="100"} {} Hz and change the analog frequency of the signal. Observe the output for f s = 10 size 12{f rSub { size 8{s} } ="10"} {} Hz and f s = 210 size 12{f rSub { size 8{s} } ="210"} {} Hz (See [link] and [link] ). The analog signals appear entirely different in these two cases but the discrete signals are similar. For the second case, the sampling frequency is less than twice that of the analog signal frequency. This violates the Nyquist sampling rate leading to aliasing, which means one does not know from which analog signal the digital signal is created. Note the value of digital frequency is 0.1 radians for the first case and 2.1 radians for the second case. To prevent any aliasing, keep the digital frequency less than 0.5 radians.

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
is it a question of log
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?