<< Chapter < Page Chapter >> Page >
Continue to describe methods for representing signals as superpositions of complex exponential functions. Develop efficient methods for analyzing LTI systems.

Lecture #14:

THE LAPLACE TRANSFORM - METHOD OF SOLUTION

Motivation:

  • Continue to describe methods for representing signals as superpositions of complex exponential functions
  • Develop efficient methods for analyzing LTI systems

Outline:

  • Review of last lecture
  • Laplace transform of the family of singularity functions
  • More on the region of convergence
  • Analysis of networks with the Laplace transform — the impedance method
  • Finding inverse transforms — partial fraction expansion
  • Conclusion
  • Historical perspective — Oliver Heaviside

Review

  • The Laplace transform represents a time function as a superposition of complex exponentials.
  • A time function is related uniquely to a Laplace transform if the ROC is specified.
  • If the Laplace transform of a sum of causal and anti-causal exponential time functions exists, its ROC is a strip in the s-plane parallel to the jω-axis.

I. LAPLACE TRANSFORMS OF SINGULARITY FUNCTIONS

1/ Unit impulse function

L { δ ( t ) } = δ ( t ) e st dt size 12{L lbrace δ \( t \) rbrace = Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {δ \( t \) e rSup { size 8{ - ital "st"} } ital "dt"} } {}

Recall the definition of the unit impulse

δ ( t ) f ( t ) dt = f ( 0 ) size 12{ Int cSub { size 8{ - infinity } } cSup { size 8{ infinity } } {δ \( t \) f \( t \) ital "dt"} =f \( 0 \) } {}

Hence,

L { δ ( t ) } = 1 size 12{L lbrace δ \( t \) rbrace =1} {}

for all values of s. The region of convergence is the entire s plane.

2/ Unit impulse function delayed — use of properties

The Laplace transform of an impulse located at t = 0 is

L { δ ( t ) } = 1 size 12{L lbrace δ \( t \) rbrace =1} {}

Using the delay property,

x ( t ) L X ( s ) x ( t T ) L X ( s ) e sT alignl { stack { size 12{x \( t \) matrix {{} # {} } { dlrarrow } cSup { size 8{L} } matrix {{} # {} } X \( s \) } {} #x \( t - T \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} X \( s \) e rSup { size 8{ - ital "sT"} } {} } } {}

the Laplace transform of the delayed impulse is

L { δ ( t T ) } = e sT size 12{L lbrace δ \( t - T \) rbrace =e rSup { size 8{ - ital "sT"} } } {}

and the region of convergence is the whole s plane.

Two-minute miniquiz problem

Problem 5-1

Find the Laplace transform including the ROC for

x ( t ) = e 2 ( t 4 ) u ( t 4 ) size 12{x \( t \) =e rSup { size 8{ - 2 \( t - 4 \) } } u \( t - 4 \) } {}

Solution

We use the Laplace transform of the causal exponential time function and time delay property to solve this problem.

e 2t u ( t ) L 1 s + 2 for σ > 2 e 2 ( t 4 ) u ( t 4 ) L 1 s + 2 e 4s for σ > 2 alignl { stack { size 12{e rSup { size 8{ - 2t} } u \( t \) matrix {{} # {} } { dlrarrow } cSup { size 8{L} } matrix {{} # {} } { {1} over {s+2} } matrix {{} # {} } ital "for" matrix {{} # {} } σ>- 2} {} # e rSup { size 8{ - 2 \( t - 4 \) } } u \( t - 4 \) matrix {{} # {} } { dlrarrow } cSup { size 8{L} } matrix {{} # {} } { {1} over {s+2} } e rSup { size 8{ - 4s} } matrix {{} # {} } ital "for" matrix {{} # {} } σ>- 2 {} } } {}

3/ Singularity functions and their relatives

The Laplace transform of a unit impulse is

δ ( t ) L 1 for all s size 12{δ \( t \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} 1 matrix { {} # {}} ital "for" matrix { {} # {}} ital "all" matrix { {} # {}} s} {}

and from the Laplace transform of a causal exponential with α = 0 we have the Laplace transform of a causal step function

u ( t ) L 1 s for σ > 0 size 12{u \( t \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} { {1} over {s} } matrix { {} # {}} ital "for" matrix { {} # {}} σ>0} {}

Note this fits together with the time differentiation property

dx ( t ) dt L sX ( s ) size 12{ { { ital "dx" \( t \) } over { ital "dt"} } { matrix {{} # {} } { dlrarrow } cSup { size 8{L} } } cSup {} matrix {{} # {} } ital "sX" \( s \) } {}

since in a generalized function sense

δ ( t ) = du ( t ) dt L L { δ ( t ) } = s 1 s = 1 size 12{δ \( t \) = { { ital "du" \( t \) } over { ital "dt"} } matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} L lbrace δ \( t \) rbrace =s left [ { {1} over {s} } right ]=1} {}

We use the multiplication by t property

tx ( t ) L dX ( s ) ds size 12{ ital "tx" \( t \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} - { { ital "dX" \( s \) } over { ital "ds"} } } {}

to obtain

tu ( t ) L d ds 1 s = 1 s 2 for σ > 0 size 12{ ital "tu" \( t \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} - { {d} over { ital "ds"} } left [ { {1} over {s} } right ]= { {1} over {s rSup { size 8{2} } } } matrix {{} # {} } ital "for" matrix {{} # {} } σ>0} {}

and use it again to obtain

t 2 u ( t ) L d ds 1 s 2 = 1 s 3 for σ > 0 size 12{t rSup { size 8{2} } u \( t \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} - { {d} over { ital "ds"} } left [ { {1} over {s rSup { size 8{2} } } } right ]= { {1} over {s rSup { size 8{3} } } } matrix {{} # {} } ital "for" matrix {{} # {} } σ>0} {}

which implies that by induction

t n u ( t ) L n ! s n + 1 for σ > 0 size 12{t rSup { size 8{n} } u \( t \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} { {n!} over {s rSup { size 8{n+1} } } } matrix { {} # {}} ital "for" matrix { {} # {}} σ>0} {}

or

t n 1 ( n 1 ) ! u ( t ) L 1 s n for σ > 0 size 12{ { {t rSup { size 8{n - 1} } } over { \( n - 1 \) !} } u \( t \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} { {1} over {s rSup { size 8{n} } } } matrix { {} # {}} ital "for" matrix { {} # {}} σ>0} {}

4/ Summary of singularity functions and their relatives

5/ Wild and crazy singularity functions

Since taking the derivative of a time function corresponds to multiplying the Laplace transform by s we can contemplate the derivative of the unit impulse called the unit doublet.

( t ) dt = δ . ( t ) L s size 12{ { {dδ \( t \) } over { ital "dt"} } = {δ} cSup { size 8{ "." } } \( t \) matrix { {} # {}} { dlrarrow } cSup { size 8{L} } matrix { {} # {}} s} {}

This process can be continued by taking successive derivatives of the impulse to form the unit triplet which has Laplace transform s 2 size 12{s rSup { size 8{2} } } {} , unit quadruplet, etc. In general, the nth derivative of the unit impulse has a Laplace transform s n size 12{s rSup { size 8{n} } } {} . We shall consider the usefulness of these higher order singularity functions later!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10803/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask