<< Chapter < Page Chapter >> Page >
Method for representing signals as superpositions of complex exponential functions, which leads to simpler solving process.

Lecture #13:

THE BILATERAL LAPLACE TRANSFORM

Motivation: Method for representing signals as superpositions of complex exponential functions, which leads to simpler solving process.

Outline:

  • Review of last lecture
  • The bilateral Laplace transform
  • Definition
  • Properties of the Laplace transform
  • Transforms of simple time functions
  • The region of convergence
  • Conclusion

I. REVIEW OF LAST LECTURE

Solve linear differential equation for a causal exponential input

{} n = 0 N a n d n y ( t ) dt n = m = 0 M b m d m x ( t ) dt m for x ( t ) = Xe st u ( t ) size 12{ Sum cSub { size 8{n=0} } cSup { size 8{N} } {a rSub { size 8{n} } { {d rSup { size 8{n} } y \( t \) } over { ital "dt" rSup { size 8{n} } } } = Sum cSub { size 8{m=0} } cSup { size 8{M} } {b rSub { size 8{m} } { {d rSup { size 8{m} } x \( t \) } over { ital "dt" rSup { size 8{m} } } } ` matrix { {} # {}} ital "for"` matrix { {} # {}} x \( t \) `=` ital "Xe" rSup { size 8{ ital "st"} } u \( t \) } } } {}

Solve homogeneous equation for t>0

n = 0 N a n d n y ( t ) dt n = 0 by assuming y h ( t ) = Ae λt size 12{ Sum cSub { size 8{n=0} } cSup { size 8{N} } {a rSub { size 8{n} } { {d rSup { size 8{n} } y \( t \) } over { ital "dt" rSup { size 8{n} } } } =`0``} matrix { {} # {}} "by " matrix { {} # {}} "assuming" matrix { {} # {}} y rSub { size 8{h} } \( t \) = ital "Ae" rSup { size 8{λt} } } {}

Solve characteristic polynomial

n = 0 N a n λ n = 0 for λ size 12{ Sum cSub { size 8{n=0} } cSup { size 8{N} } {a rSub { size 8{n} } } λ rSup { size 8{n} } =0` matrix { {} # {}} ital "for" matrix { {} # {}} `λ} {}

Solve for a particular solution for t>0

n = 0 N a n d n y p ( t ) dt n = m = 0 M b m d m x ( t ) dt m for x ( t ) = Xe st size 12{ Sum cSub { size 8{n=0} } cSup { size 8{N} } {a rSub { size 8{n} } { {d rSup { size 8{n} } y rSub { size 8{p} } \( t \) } over { ital "dt" rSup { size 8{n} } } } = Sum cSub { size 8{m=0} } cSup { size 8{M} } {b rSub { size 8{m} } { {d rSup { size 8{m} } x \( t \) } over { ital "dt" rSup { size 8{m} } } } ` matrix { {} # {}} ital "for" matrix { {} # {}} `} } x \( t \) = ital "Xe" rSup { size 8{ ital "st"} } } {}

Assuming y p ( t ) = Ye st n size 12{y rSub { size 8{p} } \( t \) = ital "Ye" rSup { size 8{ ital "st"} } n} {} and solving for Y yields

Y = H ( s ) X = m = 0 M b m s m n = 0 N b n s n X size 12{Y=H \( s \) X= { { Sum cSub { size 8{m=0} } cSup { size 8{M} } {b rSub { size 8{m} } s rSup { size 8{m} } } } over { Sum cSub { size 8{n=0} } cSup { size 8{N} } {b rSub { size 8{n} } s rSup { size 8{n} } } } } X} {}

H ( s ) = V I = 1 C ( s s 2 + 1 RC s + 1 RC ) size 12{H \( s \) = { {V} over {I} } = { {1} over {C} } \( { {s} over {s rSup { size 8{2} } + { {1} over { ital "RC"} } s+ { {1} over { ital "RC"} } } } \) } {}

Logic for an analysis method for CT LTI systems

  • H(s) characterizes system  compute H(s) efficiently.
  • In steady state, response to Xe st size 12{"Xe" rSup { size 8{"st"} } } {} is H ( s ) Xe st size 12{H \( s \) "Xe" rSup { size 8{"st"} } } {} .
  • Represent arbitrary x(t) as superpositions of Xe st size 12{"Xe" rSup { size 8{"st"} } } {} on s.
  • Compute response y(t) as superpositions of H ( s ) Xe st size 12{H \( s \) "Xe" rSup { size 8{"st"} } } {} on s.

II. THE BILATERAL LAPLACE TRANSFORM DEFINITION

1/ Analysis formula

The bilateral Laplace transform is defined by the analysis formula

X ( s ) = x ( t ) e st dt size 12{X \( s \) = Int rSub { size 8{ - infinity } } rSup { size 8{ infinity } } {x \( t \) } e rSup { size 8{ - ital "st"} } ital "dt"} {}

X(s) is defined for regions in s — called the region of conver­gence (ROC) — for which the integral exists.

2/ Synthesis formula

The inverse transform is defined by the synthesis formula

x ( t ) = 1 2πj σ j σ + j X ( t ) e st ds size 12{x \( t \) = { {1} over {2πj} } Int rSub { size 8{σ - j infinity } } rSup { size 8{σ+j infinity } } {X \( t \) } e rSup { size 8{ ital "st"} } ital "ds"} {}

Since s is a complex quantity, X(s) is a complex function of a complex variable, and σ size 12{σ} {} is in the ROC.

  • The synthesis formula involves integration in the complex s domain. We shall not perform this integration in this subject. The synthesis formula will be used only to prove theorems and not to compute time functions directly.
  • The synthesis formula makes apparent that x(t) is synthe­sized by a superposition of an uncountably infinite number of eternal complex exponentials e st size 12{e rSup { size 8{"st"} } } {} each for a different value of s and each of infinitesimal magnitude X(s)ds.

3/ Relation to unilateral Laplace transform

The difference between the unilateral and the bilateral Laplace transform is in the lower limit of integration, i.e.,

Bilateral X ( s ) = x ( t ) e st dt size 12{"Bilateral " drarrow X \( s \) = Int rSub { size 8{ - infinity } } rSup { size 8{ infinity } } {x \( t \) } e rSup { size 8{ - ital "st"} } ital "dt"} {}

Unilateral X ( s ) = 0 x ( t ) e st dt size 12{"Unilateral " drarrow X \( s \) = Int rSub { size 8{0} } rSup { size 8{ infinity } } {x \( t \) } e rSup { size 8{ - ital "st"} } ital "dt"} {}

  • The unilateral Laplace transform is restricted to causal time functions, and takes initial conditions into account in a sys­tematic, automatic manner both in the solution of differential equations and in the analysis of systems.
  • The bilateral Laplace transform can represent both causal and non-causal time functions. Initial conditions are ac­counted by including additional inputs.

4/ Approach

Databases of time functions and their Laplace transforms are developed as follows:

  • Determine the Laplace transforms of simple time functions directly,
  • Use the Laplace transform properties to extend the database of transform pairs.

Notation

We shall use two useful notations — L {x(t)} signifies the Laplace transform of x(t) and a Laplace transform pair is indicated by

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10803/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask