<< Chapter < Page Chapter >> Page >

Positive photoresist chemistry

Positive photoresist materials originally developed for the printing industry have found use in the semiconductor industry. The commonly used novolac resins (phenol-formaldehyde copolymer) and (photosensitive) diazoquinone both were products of the printing industry.

The novolak resin is a copolymer of a phenol and formaldehyde ( [link] ). Novolak resins are soluble in common organic solvents (including ethyl cellosolve acetate and diglyme) and aqueous base solutions. Commercial resists usually contain meta-cresol resins formed by the acid-catalyzed condensation of meta-cresol and formaldehyde.

Structure of a novolak resin.

The positive photoresist sensitizers are substituted diazonaphthoquinones. The choice of substituents affects the solubility and the absorption characteristics of the sensitizers. Common substituents are aryl sulfonates. The diazoquinones are formed by a reaction of diazonaphthoquinone sulfonyl chloride with an alcohol to form sulfonate ester; the sensitizers are then incorporated into the resist via a carrier or bonded to the resin. The sensitizer acts as a dissolution inhibitor for the novalac resin and is base-insoluble. The positive photoresist is formulated from a novolac resin, a diazonaphthoquinone sensitizer, and additives dissolved in a 20 - 40 wt% organic solvent. In a typical resist, up to 40 wt% of the resist may be the sensitizer.

The photochemical reaction of quinonediazide is illustrated in [link] . Upon absorption of a photon, the quinonediazide decomposes through Wolff rearrangement, specifically a Sus reaction, and produces gaseous nitrogen as a by-product. In the presence of water, the decomposition product forms an indene carboxylic acid, which is base-soluble. However, the formation of acid may not be the reason for increased solubility; the release of nitrogen gas produces a porous structure through which the developer may readily diffuse, resulting in increased solubility.

Image reversal

By introducing an additive to the novolac resins with diazonaphthaquiones sensitizers, the resultant photoresist may be used to form a negative image. A small amount of a basic additive such as monazoline, imidazole, and triethylamine is mixed into a positive novolac resist. Upon exposure to light, the diazonaphthaquiones sensitizer forms an indene carboxylic acid. During the subsequent baking process, the base catalyzes a thermal decarboxylation, resulting in a substituted indene that is insoluble in aqueous base. Then, the resist is flood exposed destroying the dissolution inhibitors remaining in the previously unexposed regions of the resist. The development of the photoresist in aqueous base results in a negative image of the mask.

Comparison of positive and negative photoresists

Into the 1970s, negative photoresist processes dominated. The poor adhesion and the high cost of positive photoresists prevented its widespread use at the time. As device dimensions grew smaller, the advantages of positive photoresists, better resolution and pinhole protection, suited the changing demands of the semiconductor industry and in the 1980s the positive photoresists came into prominence. A comparison of negative and positive photoresists is given in [link] .

A comparison of negative and positive photoresists.

The better resolution of positive resists over negative resists may be attributed to the swelling and image distortion of negative resists during development; this prevents the formation of sharp vertical walls of negative resist. Disadvantages of positive photoresists include a higher cost and lower sensitivity.

Positive photoresists have become the industry choice over negative photoresists. Negative photoresists have much poorer resolution and the positive photoresists exhibit better etch resistance and better thermal stability. As optical masking processes are still preferred in the semiconductor industry, efforts to improve the processes are ongoing. Currently, researchers are studying various forms of chemical amplification to increase the photon absorption of photoresists.


  • W.M. Alvino, Plastics For Electronics , McGraw-Hill, Inc, New York (1995).
  • R. W. Blevins, R. C. Daly, and S. R. Turner, in Encyclopedia of Polymer Science and Engineering , Ed. J. I. Krocehwitz, Wiley, New York (1985).
  • M. J. Bowden, in Materials for Microlithography: Radiation-Sensitive Polymers , Ed. L. F. Thompson, C. G. Willson, and J. M. J. Frechet, American Chemical Society Symposium Series No. 266, Washington, D.C. (1984).
  • S. J. Moss and A. Ledwith, The Chemistry of the Semiconductor Industry , Blackie&Son Limited, Glasgow (1987).
  • E. Reichmanis, F. M. Houlihan, O. Nalamasu, and T. X. Neenan, in Polymers for Microelectronics , Ed. L. F. Thompson, C. G. Willson, and S. Tagawa, American Chemical Society Symposium Series, No. 537, Washington, D.C. (1994).
  • P. van Zant, Microchip Fabrication , 2nd ed., McGraw-Hill Publishing Company, New York (1990).
  • C. Grant Willson, in Introduction to Microlithography , 2nd ed., Ed. L. F. Thompson, C. G. Willson, M. J. Bowden, American Chemical Society, Washington, D.C. (1983).

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?