<< Chapter < Page Chapter >> Page >
This module was developed as part of the Rice University course CHEM-496: Chemistry of Electronic Materials . This module was prepared with the assistance of Angela Cindy Wei.

Photolithography

In photolithography, a pattern may be transferred onto a photoresist film by exposing the photoresist to light through a mask of the pattern. In the semiconductor industry, the photolithographic procedure includes the following steps as illustrated in [link] : coating a base material with photoresist, exposing the resist through a mask to light, developing the resist, etching the exposed areas of the base, and stripping the remaining resist off.

Steps in optical printing using photolithography.

Upon exposure to light, the photoresist may become more or less soluble depending on the chemical properties of the particular resist material. The photochemical reactions include chain scission, cross-linking, and the rearrangement of molecules. If the exposed areas of the photoresist become more soluble, then it is a positive resist; conversely, if the exposed resist becomes less soluble, then it is a negative resist. In developing the photoresist, the more soluble material is removed leaving a positive or a negative image of the mask pattern.

Photoresist

Photoresists were initially developed for the printing industry. In the 1920s, the application of photoresists spread to the printed circuit board industry. Photoresists for semiconductor use were first developed in the 1950s; Kodak developed commercial negative photoresists and shortly after, Shipley developed a line of positive resists. Several other companies have entered the market since that time in hopes of manufacturing resist products which meet the increasing demands of the semiconductor industry: narrower line widths, fewer defects, and higher production rates.

Photoresist composition

Several functional requirements must be met for a photoresist to be used in the semiconductor industry. Photoresist polymers must be soluble for easy deposition onto a substrate by spin-coating. Good photoresist-substrate adhesion properties are required to minimize undercutting, to maintain edge acuity, and to control the feature sizes. The photoresist must be chemically resistant to whichever etchants are to be used. Sensitivity of the photoresist to a particular light source is essential to the functionality of a photoresist. The speed at which chemical changes occur in a photoresist is its contrast. The contrast of a resist is dependent on the molecular weight distribution of the polymers: a broad molecular weight distribution results in a low contrast resist. High contrast resists produce higher resolution images.

The four basic components of a photoresist are the polymer, the solvent, sensitizers, and other additives. The role of the polymer is to either polymerize or photosolubilize when exposed to light. Solvents allow the photoresist to be applied by spin-coating. The sensitizers control the photochemical reactions and additives may be used to facilitate processing or to enhance material properties. Photochemical changes to polymers are essential to the functionality of a photoresist. Polymers are composed primarily of carbon, hydrogen, and oxygen-based molecules arranged in a repeated pattern. Negative photoresists are based on polyisopreme polymers; negative resist polymers are not chemically bonded to each other, but upon exposure to light, the polymers crosslink, or polymerize. Positive photoresists are formulated from phenol-formaldehyde novolak resins; the positive resist polymers are relatively insoluble, but upon exposure to light, the polymers undergo photosolubilization.

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask