<< Chapter < Page Chapter >> Page >
• ĐẠI CƯƠNG. • PHƯƠNG TRÌNH TRẠNG THÁI VÀ PHƯƠNG TRÌNH OUTPUT.• SỰ BIỂU DIỄN BẰNG MA TRẬN CỦA PHƯƠNG TRÌNH TRẠNG THÁI. • VÀI VÍ DỤ.ĐỒ HÌNH TRẠNG THÁI

Đại cương.

Trong các chương trước, ta đã khảo sát vài phương pháp thông dụng để phân giải các hệ tự kiểm. Phép biến đổi Laplace đã được dùng để chuyển các phương trình vi phân mô tả hệ thống thành các phương trình đại số theo biến phức S. Dùng phương trình đại số này ta có thể tìm được hàm chuyển mô tả tương quan nhân quả giữa ngõ vào và ngõ ra.

Tuy nhiên, việc phân giải hệ thống trong miền tần số, với biến phức, dù là kỹ thuật rất thông dụng trong tự động học, nhưng có rất nhiều giới hạn. Sự bất lợi lớn nhất, đó là các điều kiện đầu bị bỏ qua. Hơn nữa, phương pháp ấy chỉ được áp dụng cho các hệ tuyến tính, không đổi theo thời gian. Và nó đặc biệt bị giới hạn khi dùng để phân giải các hệ đa biến.

Ngày nay, với sự phát triển của máy tính, các điều khiển thường được phân giải trong miền thời gian. Và vì vậy, cần thiết phải có một phương pháp khác để đặc trưng hóa cho hệ thống.

Phương pháp mới, là sự dùng”biến số trạng thái” (state variable) để đặc trưng cho hệ thống. Một hệ thống có thể được phân giải và thiết kế dựa vào một tập hợp các phương trình vi phân cấp một sẽ tiện lợi hơn so với một phương trình độc nhất cấp cao. Vấn đề sẽ được đơn giản hóa rất nhiều và thật tiện lợi nếu dùng máy tính để giải.

Giả sử một tập hợp các biến x1(t), x2(t)...xn(t) được chọn để mô tả trạng thái động của hệ thống tại bất kỳ thời điểm cho sẳn t=t­­0 nào, các biến này mô tả hoàn toàn trạng thái quá khứ ( past history ) của hệ cho đến thời điểm t­0. Nghĩa là các biến x1(t0), x2(t0) . . . xn(t0), xác định trạng thái đầu của hệ tại t=t0. Vậy khi có những tín hiệu vào tại t>= t0 được chỉ rõ, thì trạng thái tương lai của hệ thống sẽ hoàn toàn được xác định .

Vậy, một cách vật lý, biến trạng thái của một hệ tuyến tính có thể được định nghĩa như là một tập hợp nhỏ nhất các biến x1(t),x2(t),... xn(t), sao cho sự hiểu biết các biến này tại thời điểm t0 bất kỳ nào cộng thêm dữ kiện về sự kích thích (excitation) ở ngõ vào được áp dụng theo sau, thì đủ để xác định trạng thái của hệ tại bất kỳ thời điểm t>=t0 nào.

Hình 4_1

x1(t),x2(t) . . . xn(t)là các biến trạng thái .

r1(t),r2(t) . . . rp(t) là các tín hiệu vào.

c1(t),c2(t) . . . cq(t) là các tín hiệu ra.

Cái ngắt điện, có lẽ là một thí dụ đơn giản nhất về biến trạng thái. Ngắt điện có thể ở vị trí hoặc ON hoặc OFF, vậy trạng thái của nó có thể là một trong hai trị giá khả hữu đó. Nên, nếu ta biết trạng thái hiện tại (vị trí) của ngắt điện tại t0 và nếu có một tín hiệu đặt ở ngõ vào, ta sẽ có thể xác định được trị giá tương lai trạng thái của nó.

Phương trình trạng thái và phương trình output.

Xem lại sơ đồ khối hình H.4_1, diễn tả một hệ thống tuyến tính với p input và q output. Ta giả sử hệ thống được đặt trưng bởi tập hợp sau đây của n phương trình vi phân cấp 1, gọi là những phương trình trạng thái.

d x i t dt = f i x 1 ( t ) , x 2 ( t ) , . . . , x n ( t ) , r 1 ( t ) , r 2 ( t ) , . . . , r p ( t ) size 12{ { { size 13{d} size 14{x rSub { size 8{ size 10{i}} } left ( size 12{t} right )}} over { size 12{"dt"} } } size 12{``=`` { size 24{f} } rSub { size 8{i} } left [`x rSub { size 8{ size 9{1}} } \( t \) ,```x rSub { size 9{2}} size 12{ \( t \) ital ", " "." "." "." ital " ,"`x rSub { size 8{ size 10{n}} } \( t \) ital ", r" rSub { size 9{`1}} } size 12{` \( t \) ,```r rSub { size 8{ size 10{2}} } \( t \) ital ", " "." "." "." ital " ,"```r rSub { size 9{p}} } size 12{ \( t \) } right ]}} {} (4.1)

(i=1,2, … ,n)

Trong đó : x 1 ( t ) size 12{ size 14{x rSub { size 10{1}} } \( t \) } {} , x 2 ( t ) size 12{ size 14{x rSub { size 10{2}} } \( t \) } {} , … , x n ( t ) size 12{ size 14{x rSub { size 10{n}} } \( t \) } {} là các biến trạng thái

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Cơ sở tự động học. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10756/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở tự động học' conversation and receive update notifications?

Ask