# 3.7 Inverse functions  (Page 7/9)

 Page 7 / 9

For the following exercises, use function composition to verify that $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)\text{\hspace{0.17em}}$ are inverse functions.

$f\left(x\right)=\sqrt[3]{x-1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)={x}^{3}+1$

$f\left(x\right)=-3x+5\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}g\left(x\right)=\frac{x-5}{-3}$

## Graphical

For the following exercises, use a graphing utility to determine whether each function is one-to-one.

$f\left(x\right)=\sqrt{x}$

one-to-one

$f\left(x\right)=\sqrt[3]{3x+1}$

$f\left(x\right)=-5x+1$

one-to-one

$f\left(x\right)={x}^{3}-27$

For the following exercises, determine whether the graph represents a one-to-one function.

not one-to-one

For the following exercises, use the graph of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ shown in [link] .

Find $\text{\hspace{0.17em}}f\left(0\right).$

$3$

Solve $\text{\hspace{0.17em}}f\left(x\right)=0.$

Find $\text{\hspace{0.17em}}{f}^{-1}\left(0\right).$

$2$

Solve $\text{\hspace{0.17em}}{f}^{-1}\left(x\right)=0.$

For the following exercises, use the graph of the one-to-one function shown in [link] .

Sketch the graph of $\text{\hspace{0.17em}}{f}^{-1}.\text{\hspace{0.17em}}$

Find

If the complete graph of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ is shown, find the domain of $\text{\hspace{0.17em}}f.\text{\hspace{0.17em}}$

$\left[2,10\right]$

If the complete graph of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ is shown, find the range of $\text{\hspace{0.17em}}f.$

## Numeric

For the following exercises, evaluate or solve, assuming that the function $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ is one-to-one.

If $\text{\hspace{0.17em}}f\left(6\right)=7,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}\text{\hspace{0.17em}}{f}^{-1}\left(7\right).$

$6$

If $\text{\hspace{0.17em}}f\left(3\right)=2,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}{f}^{-1}\left(2\right).$

If $\text{\hspace{0.17em}}{f}^{-1}\left(-4\right)=-8,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}f\left(-8\right).$

$-4$

If $\text{\hspace{0.17em}}{f}^{-1}\left(-2\right)=-1,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}f\left(-1\right).$

For the following exercises, use the values listed in [link] to evaluate or solve.

$x$ $f\left(x\right)$
0 8
1 0
2 7
3 4
4 2
5 6
6 5
7 3
8 9
9 1

Find $\text{\hspace{0.17em}}f\left(1\right).$

$0$

Solve $\text{\hspace{0.17em}}f\left(x\right)=3.$

Find $\text{\hspace{0.17em}}{f}^{-1}\left(0\right).$

$\text{\hspace{0.17em}}1\text{\hspace{0.17em}}$

Solve $\text{\hspace{0.17em}}{f}^{-1}\left(x\right)=7.$

Use the tabular representation of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ in [link] to create a table for $\text{\hspace{0.17em}}{f}^{-1}\left(x\right).$

 $x$ 3 6 9 13 14 $f\left(x\right)$ 1 4 7 12 16
 $x$ 1 4 7 12 16 ${f}^{-1}\left(x\right)$ 3 6 9 13 14

## Technology

For the following exercises, find the inverse function. Then, graph the function and its inverse.

$f\left(x\right)=\frac{3}{x-2}$

$f\left(x\right)={x}^{3}-1$

${f}^{-1}\left(x\right)={\left(1+x\right)}^{1/3}$

Find the inverse function of $\text{\hspace{0.17em}}f\left(x\right)=\frac{1}{x-1}.\text{\hspace{0.17em}}$ Use a graphing utility to find its domain and range. Write the domain and range in interval notation.

## Real-world applications

To convert from $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ degrees Celsius to $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ degrees Fahrenheit, we use the formula $\text{\hspace{0.17em}}f\left(x\right)=\frac{9}{5}x+32.\text{\hspace{0.17em}}$ Find the inverse function, if it exists, and explain its meaning.

${f}^{-1}\left(x\right)=\frac{5}{9}\left(x-32\right).\text{\hspace{0.17em}}$ Given the Fahrenheit temperature, $\text{\hspace{0.17em}}x,\text{\hspace{0.17em}}$ this formula allows you to calculate the Celsius temperature.

The circumference $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ of a circle is a function of its radius given by $\text{\hspace{0.17em}}C\left(r\right)=2\pi r.\text{\hspace{0.17em}}$ Express the radius of a circle as a function of its circumference. Call this function $\text{\hspace{0.17em}}r\left(C\right).\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}r\left(36\pi \right)\text{\hspace{0.17em}}$ and interpret its meaning.

A car travels at a constant speed of 50 miles per hour. The distance the car travels in miles is a function of time, $\text{\hspace{0.17em}}t,\text{\hspace{0.17em}}$ in hours given by $\text{\hspace{0.17em}}d\left(t\right)=50t.\text{\hspace{0.17em}}$ Find the inverse function by expressing the time of travel in terms of the distance traveled. Call this function $\text{\hspace{0.17em}}t\left(d\right).\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}t\left(180\right)\text{\hspace{0.17em}}$ and interpret its meaning.

$t\left(d\right)=\frac{d}{50},\text{\hspace{0.17em}}$ $t\left(180\right)=\frac{180}{50}.\text{\hspace{0.17em}}$ The time for the car to travel 180 miles is 3.6 hours.

## Functions and Function Notation

For the following exercises, determine whether the relation is a function.

$\left\{\left(a,b\right),\left(c,d\right),\left(e,d\right)\right\}$

function

$\left\{\left(5,2\right),\left(6,1\right),\left(6,2\right),\left(4,8\right)\right\}$

${y}^{2}+4=x,\text{\hspace{0.17em}}$ for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ the independent variable and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ the dependent variable

not a function

Is the graph in [link] a function?

For the following exercises, evaluate the function at the indicated values: $\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(-3\right);\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(2\right);\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(-a\right);\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}-f\left(a\right);\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}f\left(a+h\right).$

$f\left(x\right)=-2{x}^{2}+3x$

$f\left(-3\right)=-27;$ $f\left(2\right)=-2;$ $f\left(-a\right)=-2{a}^{2}-3a;$
$-f\left(a\right)=2{a}^{2}-3a;$ $f\left(a+h\right)=-2{a}^{2}+3a-4ah+3h-2{h}^{2}$

$f\left(x\right)=2|3x-1|$

For the following exercises, determine whether the functions are one-to-one.

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
e power cos hyperbolic (x+iy)
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
why {2kπ} union {kπ}={kπ}?
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
what is complex numbers
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Solve 2cos x + 3sin x = 0.5