<< Chapter < Page Chapter >> Page >

Drawing an angle in standard position always starts the same way—draw the initial side along the positive x -axis. To place the terminal side of the angle, we must calculate the fraction of a full rotation the angle represents. We do that by dividing the angle measure in degrees by 360° . For example, to draw a 90° angle, we calculate that 90° 360° = 1 4 . So, the terminal side will be one-fourth of the way around the circle, moving counterclockwise from the positive x -axis. To draw a 360° angle, we calculate that 360° 360° = 1. So the terminal side will be 1 complete rotation around the circle, moving counterclockwise from the positive x -axis. In this case, the initial side and the terminal side overlap. See [link] .

Side by side graphs. Graph on the left is a 90 degree angle and graph on the right is a 360 degree angle. Terminal side and initial side are labeled for both graphs.

Since we define an angle in standard position    by its terminal side, we have a special type of angle whose terminal side lies on an axis, a quadrantal angle . This type of angle can have a measure of 0°, 90°, 180°, 270°, or 360° . See [link] .

Four side by side graphs. First graph shows angle of 0 degrees. Second graph shows an angle of 90 degrees. Third graph shows an angle of 180 degrees. Fourth graph shows an angle of 270 degrees.
Quadrantal angles have a terminal side that lies along an axis. Examples are shown.

Quadrantal angles

An angle is a quadrantal angle    if its terminal side lies on an axis, including 0°, 90°, 180°, 270°, or 360° .

Given an angle measure in degrees, draw the angle in standard position.

  1. Express the angle measure as a fraction of 360° .
  2. Reduce the fraction to simplest form.
  3. Draw an angle that contains that same fraction of the circle, beginning on the positive x -axis and moving counterclockwise for positive angles and clockwise for negative angles.

Drawing an angle in standard position measured in degrees

  1. Sketch an angle of 30° in standard position.
  2. Sketch an angle of −135° in standard position.
  1. Divide the angle measure by 360° .

    30° 360° = 1 12

    To rewrite the fraction in a more familiar fraction, we can recognize that

    1 12 = 1 3 ( 1 4 )

    One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a line at 30° , as in [link] .

    Graph of a 30 degree angle on an xy-plane.
  2. Divide the angle measure by 360° .

    −135° 360° = 3 8

    In this case, we can recognize that

    3 8 = 3 2 ( 1 4 )

    Negative three-eighths is one and one-half times a quarter, so we place a line by moving clockwise one full quarter and one-half of another quarter, as in [link] .

    Graph of a negative 135 degree angle with a clockwise rotation to the terminal side instead of counterclockwise.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Show an angle of 240° on a circle in standard position.

Graph of a 240-degree angle with a counterclockwise rotation.
Got questions? Get instant answers now!

Converting between degrees and radians

Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may choose other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you stop before the circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a full circle, a full circle, or more than a full circle, represented by more than one full rotation. The length of the arc around an entire circle is called the circumference of that circle.

The circumference of a circle is C = 2 π r . If we divide both sides of this equation by r , we create the ratio of the circumference, which is always 2 π , to the radius, regardless of the length of the radius. So the circumference of any circle is 2 π 6.28 times the length of the radius. That means that if we took a string as long as the radius and used it to measure consecutive lengths around the circumference, there would be room for six full string-lengths and a little more than a quarter of a seventh, as shown in [link] .

Questions & Answers

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
Payal Reply
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
Please you teach
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask