<< Chapter < Page Chapter >> Page >

Introduction

Ion Chromatography is a method of separating ions based on their distinct retention rates in a given solid phase packing material. Given different retention rates for two anions or two cations, the elution time of each ion will differ, allowing for detection and separation of one ion before the other. Detection methods are separated between electrochemical methods and spectroscopic methods. This guide will cover the principles of retention rates for anions and cations, as well as describing the various types of solid-state packing materials and eluents that can be used.

Principles of ion chromatography

Retention models in anion chromatography

The retention model for anionic chromatography can be split into two distinct models, one for describing eluents with a single anion, and the other for describing eluents with complexing agents present. Given an eluent anion or an analyte anion, two phases are observed, the stationary phase (denoted by S) and the mobile phase (denoted by M). As such, there is equilibrium between the two phases for both the eluent anions and the analyte anions that can be described by [link] .

This yields an equilibrium constant as given in [link] .

Given the activity of the two ions cannot be found in the stationary or mobile phases, the activity coefficients are set to 1. Two new quantities are then introduced. The first is the distribution coefficient, D A , which is the ratio of analyte concentrations in the stationary phase to the mobile phase, [link] . The second is the retention factor, k 1 A , which is the distribution coefficient times the ratio of volume between the two phases, [link] .

Substituting the two quantities from [link] and [link] into [link] , the equilibrium constant can be written as [link] .

Given there is usually a large difference in concentrations between the eluent and the analyte (with magnitudes of 10 greater eluent), equation 4 can be re-written under the assumption that all the solid phase packing material’s functional groups are taken up by E y- . As such, the stationary E y- can be substituted with the exchange capacity divided by the charge of E y- . This yields [link] .

Solving for the retention factor, [link] is developed.

[link] shows the relationship between retention factor and parameters like eluent concentration and the exchange capacity, which allows parameters of the ion chromatography to be manipulated and the retention factors to be determined. [link] only works for a single analyte present, but a relationship for the selectivity between two analytes [A] and [B]can easily be determined.

First the equilibrium between the two analytes is determined as [link] .

The equilibrium constant can be written as [link] (ignoring activity):

The selectivity can then be determined to be [link] .

[link] can then be simplified into a logarithmic form as the following two equations:

When the two charges are the same, it can be seen that the selectivity is only a factor of the selectivity coefficients and the charges. When the two charges are different, it can be seen that the two retention factors are dependent upon each other.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask