<< Chapter < Page Chapter >> Page >

In situations with a polyatomic eluent, three models are used to account for the multiple anions in the eluent. The first is the dominant equilibrium model, in which one anion is so dominant in concentration; the other eluent anions are ignored. The dominant equilibrium model works best for multivalence analytes. The second is the effective charge model, where an effective charge of the eluent anions is found, and a relationship similar to EQ is found with the effective charge. The effective charge models works best with monovalent analytes. The third is the multiple eluent species model, where [link] describes the retention factor:

C 3 is a constant that includes the phase volume ratio between stationary, the equilibrium constant, and mobile and the exchange capacity. C p is the total concentration of the eluent species. X 1 , X 2 , X 3 , correspond to the shares of a particular eluent anion in the retention of the analyte.

Retention models of cation chromatography

For eluents with a single cation and analytes that are alkaline earth metals, heavy metals or transition metals, a complexing agent is used to bind with the metal during chromatography. This introduces the quantity A(m) to the retention rate calculations, where A(m) is the ratio of free metal ion to the total concentration of metal. Following a similar derivation to the single anion case, [link] is found.

Solving for the retention coefficient, [link] is found.

From this expression, the retention rate of the cation can be determined from eluent concentration and the ratio of free metal ions to the total concentration of the metal, which itself is depended on the equilibrium of the metal ion with the complexing agent.

Solid phase packing materials

The solid phase packing material used in the chromatography column is important to the exchange capacity of the anion or cation. There are many types of packing material, but all share a functional group that can bind either the anion or the cation complex. The functional group is mounted on a polymer surface or sphere, allowing large surface area for interaction.

Packing material for anion chromatography

The primary functional group used for anion chromatography is the ammonium group. Amine groups are mounted on the polymer surface, and the pH is lowered to produce ammonium groups. As such, the exchange capacity is depended on the pH of the eluent. To reduce the pH dependency, the protons on the ammonium are successively replaced with alkyl groups until the all the protons are replaced and the functional group is still positively charged, but pH independent. The two packing materials used in almost all anion chromatography are trimethylamine (NMe 3 , [link] ) and dimethylanolamine ( [link] ).

A trimethylamine mounted on a polymer used as a solid phase packing material.
A dimethylethanolamine mounted on a polymer used as solid phase packing material.

Packing material for cation chromatography

Cation chromatography allows for the use of both organic polymer based and silica gel based packing material. In the silica gel based packing material, the most common packing material is a polymer-coated silica gel. The silicate is coated in polymer, which is held together by cross-linking of the polymer. Polybutadiene maleic acid ( [link] ) is then used to create a weakly acidic material, allowing the analyte to diffuse through the polymer and exchange. Silica gel based packing material is limited by the pH dependent solubility of the silica gel and the pH dependent linking of the silica gel and the functionalized polymer. However, silica gel based packing material is suitable for separation of alkali metals and alkali earth metals.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask