<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Correlate two nearby circuits that carry time-varying currents with the emf induced in each circuit
  • Describe examples in which mutual inductance may or may not be desirable

Inductance is the property of a device that tells us how effectively it induces an emf in another device. In other words, it is a physical quantity that expresses the effectiveness of a given device.

When two circuits carrying time-varying currents are close to one another, the magnetic flux through each circuit varies because of the changing current I in the other circuit. Consequently, an emf is induced in each circuit by the changing current in the other. This type of emf is therefore called a mutually induced emf , and the phenomenon that occurs is known as mutual inductance ( M ) . As an example, let’s consider two tightly wound coils ( [link] ). Coils 1 and 2 have N 1 and N 2 turns and carry currents I 1 and I 2 , respectively. The flux through a single turn of coil 2 produced by the magnetic field of the current in coil 1 is Φ 21 , whereas the flux through a single turn of coil 1 due to the magnetic field of I 2 is Φ 12 .

Figure shows the cross sections of two coils. In each one, the cross sections of the wire of the coil are shown as two circles, one at the top and the other at the bottom. Dots in the upper circles and crosses in the lower ones indicate the direction of flow of current. Coil 1 has field lines labeled B1 passing from between the two circles, going right. Some of these pass through coil 2, which is smaller than coil 1.
Some of the magnetic field lines produced by the current in coil 1 pass through coil 2.

The mutual inductance M 21 of coil 2 with respect to coil 1 is the ratio of the flux through the N 2 turns of coil 2 produced by the magnetic field of the current in coil 1, divided by that current, that is,

M 21 = N 2 Φ 21 I 1 .

Similarly, the mutual inductance of coil 1 with respect to coil 2 is

M 12 = N 1 Φ 12 I 2 .

Like capacitance, mutual inductance is a geometric quantity. It depends on the shapes and relative positions of the two coils, and it is independent of the currents in the coils. The SI unit for mutual inductance M is called the henry (H)    in honor of Joseph Henry (1799–1878), an American scientist who discovered induced emf independently of Faraday. Thus, we have 1 H = 1 V · s/A . From [link] and [link] , we can show that M 21 = M 12 , so we usually drop the subscripts associated with mutual inductance and write

M = N 2 Φ 21 I 1 = N 1 Φ 12 I 2 .

The emf developed in either coil is found by combining Faraday’s law    and the definition of mutual inductance. Since N 2 Φ 21 is the total flux through coil 2 due to I 1 , we obtain

ε 2 = d d t ( N 2 Φ 21 ) = d d t ( M I 1 ) = M d I 1 d t

where we have used the fact that M is a time-independent constant because the geometry is time-independent. Similarly, we have

ε 1 = M d I 2 d t .

In [link] , we can see the significance of the earlier description of mutual inductance ( M ) as a geometric quantity. The value of M neatly encapsulates the physical properties of circuit elements and allows us to separate the physical layout of the circuit from the dynamic quantities, such as the emf and the current. [link] defines the mutual inductance in terms of properties in the circuit, whereas the previous definition of mutual inductance in [link] is defined in terms of the magnetic flux experienced, regardless of circuit elements. You should be careful when using [link] and [link] because ε 1 and ε 2 do not necessarily represent the total emfs in the respective coils. Each coil can also have an emf induced in it because of its self-inductance (self-inductance will be discussed in more detail in a later section).

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask