<< Chapter < Page Chapter >> Page >

High-resolution transmission electron microscope (hrtem)

There are high-resolution TEM (HRTEM) which have been built. In fact the resolution is sufficient to show carbon atoms in diamond separated by only 89 picometers and atoms in silicon at 78 picometers. This is at magnifications of 50 million times. The ability to determine the positions of atoms within materials has made the HRTEM a very useful tool for nano-technologies research. It is also very important for the development of semiconductor devices for electronics and photonics.

Transmission electron microscopes produce two-dimensional images.

Scanning electron microscope (sem)

The Scanning Electron Microscope (SEM) produces images by hitting the target with a primary electron beam which then excites the surface of the target. This causes secondary electrons to be emitted from the surface which are then detected. So the electron beam in the SEM is moved (or scanned) across the sample, while detectors build an image from the secondary electrons.

Generally, the transmission electron microscope's resolution is about an order of magnitude better than the SEM resolution. However, because the SEM image relies on surface processes rather than transmission it is able to image bulk samples (unlike optical microscopes and TEM which require the samples to be thin) and has a much greater depth of view, and so can produce images that are a good representation of the 3D structure of the sample.

Disadvantages of an electron microscope

Electron microscopes are expensive to buy and maintain. They are also very sensitive to vibration and external magnetic fields. This means that special facilities are required to house microscopes aimed at achieving high resolutions. Also the targets have to be viewed in vacuum, as the electrons would scatter off the molecules that make up air.

Scanning electron microscope (sem)

Scanning electron microscopes usually image conductive or semi-conductive materials best. A common preparation technique is to coat the target with a several-nanometer layer of conductive material, such as gold, from a sputtering machine; however this process has the potential to disturb delicate samples.

The targets have to be prepared in many ways to give proper detail. This may result in artifacts purely as a result of the treatment. This gives the problem of distinguishing artifacts from material, particularly in biological samples. Scientists maintain that the results from various preparation techniques have been compared, and as there is no reason that they should all produce similar artifacts, it is therefore reasonable to believe that electron microscopy features correlate with living cells.

Interesting fact

The first electron microscope prototype was built in 1931 by the German engineers Ernst Ruska and Max Knoll. It was based on the ideas and discoveries of Louis de Broglie. Although it was primitive and was not ideal for practical use, the instrument was still capable of magnifying objects by four hundred times. The first practical electron microscope was built at the University of Toronto in 1938, by Eli Franklin Burton and students Cecil Hall, James Hillier and Albert Prebus.

Although modern electron microscopes can magnify objects up to two million times, they are still based upon Ruska's prototype and his correlation between wavelength and resolution. The electron microscope is an integral part of many laboratories. Researchers use it to examine biological materials (such as microorganisms and cells), a variety of large molecules, medical biopsy samples, metals and crystalline structures, and the characteristics of various surfaces.

Uses of electron microscopes

Electron microscopes can be used to study:

  • the topography of an object - how its surface looks.
  • the morphology of particles making up an object - their shapes and sizes.
  • the composition of an object - the elements and compounds that the object is composed of and the relative amounts of them.
  • the crystallographic information for crystalline samples - how the atoms are arranged in the object.

End of chapter exercises

  1. If the following particles have the same velocity, which has the shortest wavelength: electron, hydrogen atom, lead atom?
  2. A bullet weighing 30 g is fired at a velocity of 500 m · s - 1 . What is its wavelength?
  3. Calculate the wavelength of an electron which has a kinetic energy of 1 . 602 × 10 - 19  J.
  4. If the wavelength of an electron is 10 - 9  m what is its velocity?
  5. Considering how one calculates wavelength using slits, try to explain why we would not be able to physically observe diffraction of the cricket ball in the first worked example.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 12 physical science. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11244/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?

Ask