<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Describe the relationship between voltage and electric field.
  • Derive an expression for the electric potential and electric field.
  • Calculate electric field strength given distance and voltage.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 2.C.5.2 The student is able to calculate the magnitude and determine the direction of the electric field between two electrically charged parallel plates, given the charge of each plate, or the electric potential difference and plate separation. (S.P. 2.2)
  • 2.C.5.3 The student is able to represent the motion of an electrically charged particle in the uniform field between two oppositely charged plates and express the connection of this motion to projectile motion of an object with mass in the Earth’s gravitational field. (S.P. 1.1, 2.2, 7.1)
  • 2.E.3.1 The student is able to apply mathematical routines to calculate the average value of the magnitude of the electric field in a region from a description of the electric potential in that region using the displacement along the line on which the difference in potential is evaluated. (S.P. 2.2)
  • 2.E.3.2 The student is able to apply the concept of the isoline representation of electric potential for a given electric charge distribution to predict the average value of the electric field in the region. (S.P. 1.4, 6.4)

In the previous section, we explored the relationship between voltage and energy. In this section, we will explore the relationship between voltage and electric field. For example, a uniform electric field E size 12{E} {} is produced by placing a potential difference (or voltage) Δ V size 12{V} {} across two parallel metal plates, labeled A and B. (See [link] .) Examining this will tell us what voltage is needed to produce a certain electric field strength; it will also reveal a more fundamental relationship between electric potential and electric field. From a physicist’s point of view, either Δ V size 12{V} {} or E size 12{E} {} can be used to describe any charge distribution. Δ V size 12{V} {} is most closely tied to energy, whereas E size 12{E} {} is most closely related to force. Δ V size 12{V} {} is a scalar    quantity and has no direction, while E size 12{E} {} is a vector    quantity, having both magnitude and direction. (Note that the magnitude of the electric field strength, a scalar quantity, is represented by E size 12{V} {} below.) The relationship between Δ V size 12{V} {} and E size 12{E} {} is revealed by calculating the work done by the force in moving a charge from point A to point B. But, as noted in Electric Potential Energy: Potential Difference , this is complex for arbitrary charge distributions, requiring calculus. We therefore look at a uniform electric field as an interesting special case.

The figure shows two vertically oriented parallel plates A and B separated by a distance d. The plate A is positively charged and B is negatively charged. Electric field lines are parallel between the plates and curved at the ends of the plates. A charge q is moved from A to B. The work done W equals q times V sub A B, and the electric field intensity E equals V sub A B over d and potential difference delta V equals q times V sub A B.
The relationship between V size 12{V} {} and E size 12{E} {} for parallel conducting plates is E = V / d size 12{E=V/d} {} . (Note that Δ V = V AB size 12{ΔV=V rSub { size 8{"AB"} } } {} in magnitude. For a charge that is moved from plate A at higher potential to plate B at lower potential, a minus sign needs to be included as follows: –Δ V = V A V B = V AB . See the text for details.)

The work done by the electric field in [link] to move a positive charge q size 12{q} {} from A, the positive plate, higher potential, to B, the negative plate, lower potential, is

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask