<< Chapter < Page Chapter >> Page >
  • Describe the relationship between voltage and electric field.
  • Derive an expression for the electric potential and electric field.
  • Calculate electric field strength given distance and voltage.

In the previous section, we explored the relationship between voltage and energy. In this section, we will explore the relationship between voltage and electric field. For example, a uniform electric field E size 12{E} {} is produced by placing a potential difference (or voltage) Δ V size 12{V} {} across two parallel metal plates, labeled A and B. (See [link] .) Examining this will tell us what voltage is needed to produce a certain electric field strength; it will also reveal a more fundamental relationship between electric potential and electric field. From a physicist’s point of view, either Δ V size 12{V} {} or E size 12{E} {} can be used to describe any charge distribution. Δ V size 12{V} {} is most closely tied to energy, whereas E size 12{E} {} is most closely related to force. Δ V size 12{V} {} is a scalar    quantity and has no direction, while E size 12{E} {} is a vector    quantity, having both magnitude and direction. (Note that the magnitude of the electric field strength, a scalar quantity, is represented by E size 12{V} {} below.) The relationship between Δ V size 12{V} {} and E size 12{E} {} is revealed by calculating the work done by the force in moving a charge from point A to point B. But, as noted in Electric Potential Energy: Potential Difference , this is complex for arbitrary charge distributions, requiring calculus. We therefore look at a uniform electric field as an interesting special case.

The figure shows two vertically oriented parallel plates A and B separated by a distance d. The plate A is positively charged and B is negatively charged. Electric field lines are parallel between the plates and curved at the ends of the plates. A charge q is moved from A to B. The work done W equals q times V sub A B, and the electric field intensity E equals V sub A B over d and potential difference delta V equals q times V sub A B.
The relationship between V size 12{V} {} and E size 12{E} {} for parallel conducting plates is E = V / d size 12{E=V/d} {} . (Note that Δ V = V AB size 12{ΔV=V rSub { size 8{"AB"} } } {} in magnitude. For a charge that is moved from plate A at higher potential to plate B at lower potential, a minus sign needs to be included as follows: –Δ V = V A V B = V AB . See the text for details.)

The work done by the electric field in [link] to move a positive charge q size 12{q} {} from A, the positive plate, higher potential, to B, the negative plate, lower potential, is

W = –Δ PE = q Δ V . size 12{W= - Δ"PE"= - qΔV} {}

The potential difference between points A and B is

–Δ V = ( V B V A ) = V A V B = V AB .

Entering this into the expression for work yields

W = qV AB . size 12{W= ital "qV" rSub { size 8{ ital "AB"} } } {}

Work is W = Fd cos θ size 12{W= ital "Fd""cos"?} {} ; here cos θ = 1 , since the path is parallel to the field, and so W = Fd . Since F = qE , we see that W = qEd . Substituting this expression for work into the previous equation gives

qEd = qV AB . size 12{qEd= ital "qV" rSub { size 8{ ital "AB"} } } {}

The charge cancels, and so the voltage between points A and B is seen to be

V AB = Ed E = V AB d (uniform E - field only),

where d size 12{d} {} is the distance from A to B, or the distance between the plates in [link] . Note that the above equation implies the units for electric field are volts per meter. We already know the units for electric field are newtons per coulomb; thus the following relation among units is valid:

1 N / C = 1 V / m . size 12{"1 N"/C="1 V"/m} {}

Voltage between points a and b

V AB = Ed E = V AB d (uniform E - field only),

where d size 12{d} {} is the distance from A to B, or the distance between the plates.

What is the highest voltage possible between two plates?

Dry air will support a maximum electric field strength of about 3.0 × 10 6 V/m size 12{3×"10" rSup { size 8{6} } " V/m"} {} . Above that value, the field creates enough ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the field. What, then, is the maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?


We are given the maximum electric field E size 12{E} {} between the plates and the distance d between them. The equation V AB = Ed size 12{V rSub { size 8{"AB"} } =Ed} {} can thus be used to calculate the maximum voltage.


The potential difference or voltage between the plates is

V AB = Ed . size 12{V rSub { size 8{"AB"} } =Ed} {}

Entering the given values for E size 12{E} {} and d size 12{d} {} gives

V AB = ( 3.0 × 10 6 V/m ) ( 0.025 m ) = 7.5 × 10 4 V


V AB = 75 kV . size 12{V rSub { size 8{"AB"} } ="75" "kV"} {}

(The answer is quoted to only two digits, since the maximum field strength is approximate.)


One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5 cm (1 in.) gap, or 150 kV for a 5 cm spark. This limits the voltages that can exist between conductors, perhaps on a power transmission line. A smaller voltage will cause a spark if there are points on the surface, since points create greater fields than smooth surfaces. Humid air breaks down at a lower field strength, meaning that a smaller voltage will make a spark jump through humid air. The largest voltages can be built up, say with static electricity, on dry days.

Got questions? Get instant answers now!

Questions & Answers

In Inelastic collision cunculate the vilocity
Anshu Reply
explain how a body becomes electrically charged based on the presence of charged particles
Kym Reply
definitely by induction
please why does a needle sinks in water
what are the calculations of Newton's third law of motiow
Murtala Reply
what is dark matter
apex Reply
(in some cosmological theories) non-luminous material which is postulated to exist in space and which could take either of two forms: weakly interacting particles ( cold dark matter ) or high-energy randomly moving particles created soon after the Big Bang ( hot dark matter ).
if the mass of a trolley is 0.1kg. calculate the weight of plasticine that is needed to compensate friction. (take g=10m/s and u=0.2)
Declan Reply
what is a galaxy
Maduka Reply
a galaxy is a type of phone e.g samsung galaxy there are diff types of samsung galaxy there is s5 s6 s7 s8 s9
what isflow rate of volume
Abcd Reply
flow rate is the volume of fluid which passes per unit time;
flow rate or discharge represnts the flow passing in unit volume per unit time
When two charges q1 and q2 are 6 and 5 coulomb what is ratio of force
Mian Reply
incomplete question
When reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel rims. Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the bicycle’s frame?
bimo Reply
is that the answer
why is it proportional
nehemiah Reply
i don't know
what are the relationship between distance and displacement
Usman Reply
They are interchangeable.
Distance is scalar, displacement is vector because it must involve a direction as well as a magnitude. distance is the measurement of where you are and where you were displacement is a measurement of the change in position
Thanks a lot
I'm beginner in physics so I can't reason why v=u+at change to v2=u2+2as and vice versa
what is kinematics
kinematics is study of motion without considering the causes of the motion
The study of motion without considering the cause 0f it
why electrons close to the nucleus have less energy and why do electrons far from the nucleus have more energy
thank you frds
plz what is the third law of thermodynamics
Chidera Reply
third law of thermodynamics states that at 0k the particles will collalse its also known as death of universe it was framed at that time when it waa nt posible to reach 0k but it was proved wrong
I have not try that experiment but I think it will magnet....
Rev Reply
Hey Rev. it will
I do think so, it will
yes it will
If a magnet is in a pool of water, would it be able to have a magnetic field?.
Stella Reply
yes Stella it would
formula for electric current
Chizzy Reply
what is that about pleace
what are you given?
what is current
Current is the flow of electric charge per unit time.
What are semi conductors
materials that allows charge to flow at varying conditions, temperature for instance.
these are materials which have electrical conductivity greater than the insulators but less than metal, in these materials energy band Gap is very narrow as compared to insulators
materials that allows charge to flow at varying conditions, temperature for instance.
wao so awesome
At what point in the oscillation of beam will a body leave it?
what is gravitational force
Practice Key Terms 2

Get the best College physics course in your pocket!

Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?