<< Chapter < Page Chapter >> Page >
Analysis of DT systems using the Z-transform. Insight into numerical methods for solving differential equations.

Lecture #16:

THE Z-TRANSFORM –

METHOD OF SOLUTION

Motivation:

  • Analysis of DT systems using the Z-transform
  • Insight into numerical methods for solving differential equations

Outline:

  • Review of last lecture
  • Analysis of ladder network
  • Analysis of discretized CT system
  • Conclusion

Review of last lecture

The Z-transform is capable of representing a rich class of DT time functions. Z-transform pairs can be obtained by combining

  • Z-transform properties
  • The Z-transforms of elementary time functions

Logic for an analysis method for DT LTI systems

  • H ~ ( z ) size 12{ {H} cSup { size 8{ "~" } } \( z \) } {} characterizes system size 12{ drarrow } {} compute H ~ ( z ) size 12{ {H} cSup { size 8{ "~" } } \( z \) } {} efficiently.
  • In steady state, response to Xz n size 12{"Xz" rSup { size 8{n} } } {} is H ~ ( z ) z n size 12{ {H} cSup { size 8{ "~" } } \( z \) z rSup { size 8{n} } } {} .
  • Represent arbitrary x[n] as superposition of X ( z ) z n size 12{X \( z \) z rSup { size 8{n} } } {} on z.
  • Compute response y[n] as superposition of H ~ ( z ) X ( z ) z n size 12{ {H} cSup { size 8{ "~" } } \( z \) X \( z \) z rSup { size 8{n} } } {} on z.

We will analyze DT systems with the Z-transform method in a manner analogous to the use of the Laplace transform for CT systems.

I. OVERVIEW OF TRANSFORM METHOD OF SOLUTION

Electric ladder network

1/ Difference equation

We wish to find the unit sample response of an electric ladder network (considered in a previous lecture), i.e., we assume v i [ n ] = δ [ ν ] size 12{v rSub { size 8{i} } \[ n \] = δ \[ ν \]} {} .

As we found in a previous lecture, KCL at node n yields the difference equation

v 0 [ n + 1 ] + ( 2 + α ) v 0 [ n ] v 0 [ n 1 ] = αv i [ n ] where α = rg size 12{ - v rSub { size 8{0} } \[ n+1 \] + \( 2+α \) v rSub { size 8{0} } \[ n \]- v rSub { size 8{0} } \[ n - 1 \] =αv rSub { size 8{i} } \[ n \]matrix { {} # {}} ital "where" matrix { {} # {}} α= ital "rg"} {}

2/ System function

We apply the Z-transform to the difference equation

-v o [ n + 1 ] + ( 2 + a ) v o [ n ] -v o [ n-1 ] = av i [ n ] size 12{" -v" rSub { size 8{o} } \[ n+1 \] + \( 2+a \) " v" rSub { size 8{o} } \[ n \]"-v" rSub { size 8{o} } \[ "n-1" \] ="av" rSub { size 8{i} } \[ n \]} {} {}

to obtain

( z + ( 2 + α ) z 1 ) V ~ o ( z ) = α V ~ i ( z ) size 12{ \( - z+ \( 2+α \) - z rSup { size 8{ - 1} } \) {V} cSup { size 8{ "~" } } rSub { size 8{o} } \( z \) =α {V} cSup { size 8{ "~" } } rSub { size 8{i} } \( z \) } {}

so that

H ~ ( z ) = V o ~ ( z ) V i = ~ ( z ) = αz z 2 ( 2 + α ) z + 1 = αz 1 1 ( 2 + α ) z 1 + z 2 size 12{ {H} cSup { size 8{ "~" } } \( z \) = { { {V rSub { size 8{o} } } cSup { size 8{ "~" } } \( z \) } over { {V rSub { size 8{i} } ={}} cSup { size 8{ "~" } } \( z \) } } = { { - αz} over {z rSup { size 8{2} } - \( 2+α \) z+1} } = { { - αz rSup { size 8{ - 1} } } over {1 - \( 2+α \) z rSup { size 8{ - 1} } +z rSup { size 8{2} } } } } {}

The z-form of the system function is easier for identifying the poles and zeros; the z 1 size 12{z rSup { size 8{ - 1} } } {} -form is easier for calculating the inverse transform.

3/ Response

v i [ n ] = δ [ ν ] size 12{v rSub { size 8{i} } \[ n \] = δ \[ ν \]} {} implies that V i ~ ( z ) = 1 size 12{ {V rSub { size 8{i} } } cSup { size 8{ "~" } } \( z \) =" 1"} {} with an ROC that is the whole z-plane. Therefore,

V ~ o ( z ) = αz z 2 ( 2 + α ) z + 1 = αz 1 1 ( 2 + α ) z 1 + z 2 size 12{ {V} cSup { size 8{ "~" } } rSub { size 8{o} } \( z \) = { { - αz} over {z rSup { size 8{2} } - \( 2+α \) z+1} } = { { - αz rSup { size 8{ - 1} } } over {1 - \( 2+α \) z rSup { size 8{ - 1} } +z rSup { size 8{2} } } } } {}

Thus, there is one zero and two poles. The poles are

p 1,2 = 1 + α 2 ± 1 + α 2 2 1 1 / 2 size 12{p rSub { size 8{1,2} } = left [1+ { {α} over {2} } right ] +- left [ left [1+ { {α} over {2} } right ]rSup { size 8{2} } - 1 right ] rSup { size 8{1/2} } } {}

It is easy to show that p 1 p 2 = 1 size 12{p rSub { size 8{1} } p rSub { size 8{2} } =1} {} . Hence we write the poles as

p 1 = p = 1 + α 2 1 + α 2 2 1 1 / 2 and p 2 = 1 / p 1 1 = 1 / p size 12{p rSub { size 8{1} } =p= left [1+ { {α} over {2} } right ] - left [ left [1+ { {α} over {2} } right ]rSup { size 8{2} } - 1 right ] rSup { size 8{1/2} } matrix {{} # {} } ital "and" matrix {{} # {} } p rSub { size 8{2} } =1/p rSub { size 8{1} } 1=1/p} {}

4/ Region of convergence

There are three possible ROCs for this response as shown below. On physical grounds, we expect the unit-sample response to be bounded.

Only the center ROC includes and unit circle and corresponds to a stable system.

Therefore, we conclude that

V ~ o ( z ) = αz 1 1 ( 2 + α ) z 1 + z 2 for p < z < 1 / p size 12{ {V} cSup { size 8{ "~" } } rSub { size 8{o} } \( z \) = { { - αz rSup { size 8{ - 1} } } over {1 - \( 2+α \) z rSup { size 8{ - 1} } +z rSup { size 8{2} } } } matrix { {} # {}} ital "for" matrix { {} # {}} p<\lline z \lline<1/p} {}

{}

where the pole at z = p contributes to the causal response while the pole at z = 1/p contributes to the anti-causal response.

5/ Inverse Z-transform

We perform a partial fraction expansion as follows

V ~ o ( z ) = αz 1 1 ( 2 + α ) z 1 + z 2 = αz 1 ( 1 p 1 z 1 ) ( 1 pz 1 ) = ( αp ) / ( 1 p 2 ) 1 p 1 z 1 + ( αp 1 ) / ( 1 p 2 ) 1 pz 1 alignl { stack { size 12{ {V} cSup { size 8{ "~" } } rSub { size 8{o} } \( z \) = { { - αz rSup { size 8{ - 1} } } over {1 - \( 2+α \) z rSup { size 8{ - 1} } +z rSup { size 8{2} } } } = { { - αz rSup { size 8{ - 1} } } over { \( 1 - p rSup { size 8{ - 1} } z rSup { size 8{ - 1} } \) \( 1 - ital "pz" rSup { size 8{ - 1} } \) } } } {} #matrix { {} # {}} = { { - \( αp \) / \( 1 - p rSup { size 8{2} } \) } over {1 - p rSup { size 8{ - 1} } z rSup { size 8{ - 1} } } } + { { - \( αp rSup { size 8{ - 1} } \) / \( 1 - p rSup { size 8{ - 2} } \) } over {1 - ital "pz" rSup { size 8{ - 1} } } } {}} } {}

which can be written as

V ~ o ( z ) = αp 1 p 2 1 1 p 1 z 1 + αp 1 p 2 1 1 pz 1 size 12{ {V} cSup { size 8{ "~" } } rSub { size 8{o} } \( z \) = - { {αp} over {1 - p rSup { size 8{2} } } } left [ { {1} over {1 - p rSup { size 8{ - 1} } z rSup { size 8{ - 1} } } } right ]+ { {αp} over {1 - p rSup { size 8{2} } } } left [ { {1} over {1 - ital "pz" rSup { size 8{ - 1} } } } right ]} {}

Therefore,

v 0 [ n ] = αp 1 p 2 p n u [ n 1 ] + αp 1 p 2 p n u [ n ] size 12{v rSub { size 8{0} } \[ n \] = { {αp} over {1 - p rSup { size 8{2} } } } p rSup { size 8{ - n} } u \[ - n - 1 \]+ { {αp} over {1 - p rSup { size 8{2} } } } p rSup { size 8{n} } u \[ n \] } {}

which can be written compactly as

v o [ n ] = αp 1 p 2 p n size 12{v rSub { size 8{o} } \[ n \] = left [ { {αp} over {1 - p rSup { size 8{2} } } } right ]p rSup { size 8{ \lline n \lline } } } {}

As the quantity α = rg increases, the spatial distribution of voltage gets narrower and narrower. Recall that r is the series resistance and g is the shunt conductance of the ladder.

II. DISCRETIZED CT SYSTEM

1/ Differential equation — RC Circuit

In a previous lecture, we considered the CT lowpass filter shown below.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10803/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask