# 4.2 Transformation of graphs by modulus function  (Page 4/4)

 Page 4 / 4

$y=f\left(x\right)\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}x=|f\left(y\right)|$

The invertible function x= f(y) has its inverse function given by y=f⁻¹(x). Alternatively, if a function is defined as y=f⁻¹(x), then variables x and y are related to each other such that x=f(y). We conclude that graph of y=f⁻¹(x) is same as graph of x=f(y) with the same orientation of x and y axes. It is important to underline here that we transform (change) graph of inverse of given function i.e. y=f⁻¹(x) to get the transformation of graph of x=f(y). Further x and y coordinates on the graph correspond to x and y values.

We interpret assignment of |f(y)| to x in the given graph in accordance with the definition of modulus function. Consider x=|f(y)|. But, modulus can not be equated to negative value. Hence, x can not be negative. It means we need to discard left half of the graph of inverse function y=f⁻¹(x). On the other hand, modulus of negative or positive value is always positive. Hence, positive value of x=a correspond to two values of function in dependent variable, a=±f(y). Corresponding to these two function values in y, we have two values of y i.e. f⁻¹(a) and f⁻¹(-a). In order to plot two values, we need to take mirror image of the left half of the graph of y=f⁻¹(x) across y-axis. This is image in y-axis.

From the point of construction of the graph of x=|f(y)|, we need to modify the graph of y=f⁻¹(x) i.e. x=f(y) as :

1 : take mirror image of left half of the graph in y-axis

2 : remove left half of the graph

This completes the construction for x=|f(y)|.

Problem : Draw graph of $x=|\mathrm{cosec}y|;\phantom{\rule{1em}{0ex}}x\in \left\{-\pi /2,\pi /2\right\}$ .

Solution : The inverse of base function is cosec⁻¹x. We first draw the graph of inverse function. Then, we take mirror image of left half of the graph in y-axis and remove left half of the graph to complete the construction of graph of $x=|\mathrm{cosec}y|$ .

## Examples

Problem : Find domain of the function given by :

$f\left(x\right)=\frac{1}{\sqrt{|\mathrm{sin}x|+\mathrm{sin}x}}$

Solution : The square root gives the condition :

$⇒|\mathrm{sin}x|+\mathrm{sin}x\ge 0$

But denominator can not be zero. Hence,

$⇒|\mathrm{sin}x|+\mathrm{sin}x>0$

$⇒|\mathrm{sin}x|>-\mathrm{sin}x$

We shall make use of graphing technique to evaluate the interval of x. Since both functions are periodic. It would be indicative of the domain if we confine our consideration to 1 period of sine function (0, 2π) and then extend the result subsequently to other periodic intervals.

We first draw sine function. To draw |sinx|, we take image of lower half in x-axis and remove the lower half. To draw “–sinx”, we take image of y=sinx in x-axis.

From the graph, we see that |sinx| is greater than “-sinx” in (0,π). Note that end points are not included. The domain is written with general notation as :

$x\in \left(2n\pi ,\left(2n+1\right)\pi \right)$

Problem : Determine graphically the points where graphs of $|y|={\mathrm{log}}_{e}|x|$ and ${\left(x-1\right)}^{2}+{y}^{2}-4=0$ intersect each other.

Solution : The function $|y|={\mathrm{log}}_{e}|x|$ is obtained by transforming $y=\mathrm{log}{}_{e}x$ . To draw $y={\mathrm{log}}_{e}|x|$ , we need to remove left half (but here there is no left half) and take image of right half in y-axis. To draw $|y|=\mathrm{log}{}_{e}|x|$ , we transform the graph of $y=\mathrm{log}{}_{e}|x|$ . For this, we remove the lower half and take image of upper half in x-axis.

On the other hand, ${\left(x-1\right)}^{2}+{y}^{2}-4=0$ is a circle with center at 1,0 having radius of 2 units. Finally, superposing two graphs, we determine the intersection points.

Clearly, there are three intersection points as shown by solid circles.

## Exercises

Draw the graph of function given by :

$f\left(x\right)=\frac{1}{\left[x\right]-1}$

Hints : Draw 1/x, which is a hyperbola with center at (0,0). Then draw 1/x-1. It is a hyperbola shifted right by 1 unit. Its center is (1,0). Remove left half and take the image of right half in y-axis.

2. Draw the graph of function given by :

$f\left(x\right)=||\frac{1}{x}|-1|$

Hints : Draw 1/x, which is a hyperbola with center at (0,0). Then draw |1/x|. Take image of lower half in x-axis. Remove lower half. To draw |1/x|-1, shift down the graph of |1/x| by 1 unit. To draw ||1/x|-1|, Take image of lower half of the graph of |1/x|-1 in x-axis. Remove lower half.

what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
im not good at math so would this help me
how did I we'll learn this
f(x)= 2|x+5| find f(-6)
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what is nanomaterials​ and their applications of sensors.
what is nano technology
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x