# 4.2 Transformation of graphs by modulus function  (Page 3/4)

 Page 3 / 4

From the point of construction of the graph of y=|f(x)|, we need to modify the graph of y=f(x) as :

(i) take the mirror image of lower half of the graph in x-axis

(ii) remove lower half of the graph

This completes the construction for y=|f(x)|.

Problem : Draw graph of $y=|\mathrm{cos}x|$ .

Solution : We first draw the graph of $y=\mathrm{cos}x$ . Then, we take the mirror image of lower half of the graph in x-axis and remove lower half of the graph to complete the construction of graph of $y=|\mathrm{cos}x|$

Problem : Draw graph of $y=|{x}^{2}-2x-3|$

Solution : We first draw graph $y={x}^{2}-2x-3$ . The roots of corresponding quadratic equation are -1 and 3. After plotting graph of quadratic function, we take the mirror image of lower half of the graph in x-axis and remove lower half of the graph to complete the construction of graph of $y=|{x}^{2}-2x-3|$

Problem : Draw graph of $y=|{\mathrm{log}}_{10}x|$ .

Solution : We first draw graph $y={\mathrm{log}}_{10}x$ . Then, we take the mirror image of lower half of the graph in x-axis and remove lower half of the graph to complete the construction of graph of $y=|{\mathrm{log}}_{10}x|$ .

## Modulus function applied to dependent variable

The form of transformation is depicted as :

$y=f\left(x\right)\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}|y|=f\left(x\right)$

As discussed in the beginning of module, value of function is first calculated for a given value of x. The value so evaluated is assigned to the modulus function |y|. We interpret assignment to |y| in accordance with the interpretation of equality of the modulus function to a value. In this case, we know that :

$|y|=f\left(x\right);f\left(x\right)>0\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}y=±f\left(x\right)\phantom{\rule{1em}{0ex}}$

$|y|=f\left(x\right);f\left(x\right)=0\phantom{\rule{1em}{0ex}}⇒\phantom{\rule{1em}{0ex}}y=0$

$|y|=f\left(x\right);f\left(x\right)<0\phantom{\rule{1em}{0ex}}⇒\text{Modulus can not be equated to negative value. No solution}$

Clearly, we need to neglect all negative values of f(x). For every positive value of f(x), there are two values of dependent expressions -f(x) and f(x). It means that we need to take image of upper part of the graph across x-axis. This is image in x-axis.

From the point of construction of the graph of |y|=f(x), we need to modify the graph of y=f(x) as :

1 : remove lower half of the graph

2 : take the mirror image of upper half of the graph in x-axis

This completes the construction for |y|=f(x).

Problem : Draw graph of $|y|=\left(x-1\right)\left(x-3\right)$ .

Solution : We first draw the graph of quadratic function given by $y=\left(x-1\right)\left(x-3\right)$ . Then, we remove lower half of the graph and take mirror image of upper half of the graph in x-axis to complete the construction of graph of $|y|=\left(x-1\right)\left(x-3\right)$ .

Problem : Draw graph of $|y|={\mathrm{tan}}^{-1}x$ .

Solution : We first draw the graph of function given by $y={\mathrm{tan}}^{-1}x$ . Then, we remove lower half of the graph and take mirror image of upper half of the graph in x-axis to complete the construction of graph of $y={\mathrm{tan}}^{-1}x$ .

## Modulus function applied to inverse function

The form of transformation is depicted as :

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x