<< Chapter < Page Chapter >> Page >
Graph of three functions, h(x)=x^2 in green, g(x)=x^4 in orange, and f(x)=x^6 in blue.
Even-power functions

To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol for positive infinity and −∞ for negative infinity. When we say that “ x approaches infinity,” which can be symbolically written as x , we are describing a behavior; we are saying that x is increasing without bound.

With the positive even-power function, as the input increases or decreases without bound, the output values become very large, positive numbers. Equivalently, we could describe this behavior by saying that as x approaches positive or negative infinity, the f ( x ) values increase without bound. In symbolic form, we could write

as  x ± ,   f ( x )

[link] shows the graphs of f ( x ) = x 3 , g ( x ) = x 5 , and h ( x ) = x 7 , which are all power functions with odd, whole-number powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the power increases, the graphs flatten near the origin and become steeper away from the origin.

Graph of three functions, f(x)=x^3 in green, g(x)=x^5 in orange, and h(x)=x^7 in blue.
Odd-power functions

These examples illustrate that functions of the form f ( x ) = x n reveal symmetry of one kind or another. First, in [link] we see that even functions of the form f ( x ) = x n n even, are symmetric about the y - axis. In [link] we see that odd functions of the form f ( x ) = x n n  odd, are symmetric about the origin.

For these odd power functions, as x approaches negative infinity, f ( x ) decreases without bound. As x approaches positive infinity, f ( x ) increases without bound. In symbolic form we write

as   x ,   f ( x )   as   x ,   f ( x )

The behavior of the graph of a function as the input values get very small ( x ) and get very large ( x ) is referred to as the end behavior    of the function. We can use words or symbols to describe end behavior.

[link] shows the end behavior of power functions in the form f ( x ) = k x n where n is a non-negative integer depending on the power and the constant.

Graph of an even-powered function with a positive constant. As x goes to negative infinity, the function goes to positive infinity; as x goes to positive infinity, the function goes to positive infinity. Graph of an odd-powered function with a positive constant. As x goes to negative infinity, the function goes to positive infinity; as x goes to positive infinity, the function goes to negative infinity. Graph of an even-powered function with a negative constant. As x goes to negative infinity, the function goes to negative infinity; as x goes to positive infinity, the function goes to negative infinity. Graph of an odd-powered function with a negative constant. As x goes to negative infinity, the function goes to negative infinity; as x goes to positive infinity, the function goes to negative infinity.

Given a power function f ( x ) = k x n where n is a non-negative integer, identify the end behavior.

  1. Determine whether the power is even or odd.
  2. Determine whether the constant is positive or negative.
  3. Use [link] to identify the end behavior.

Identifying the end behavior of a power function

Describe the end behavior of the graph of f ( x ) = x 8 .

The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As x approaches infinity, the output (value of f ( x ) ) increases without bound. We write as x , f ( x ) . As x approaches negative infinity, the output increases without bound. In symbolic form, as x ,   f ( x ) . We can graphically represent the function as shown in [link] .

Graph of f(x)=x^8.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Identifying the end behavior of a power function.

Describe the end behavior of the graph of f ( x ) = x 9 .

The exponent of the power function is 9 (an odd number). Because the coefficient is –1 (negative), the graph is the reflection about the x - axis of the graph of f ( x ) = x 9 . [link] shows that as x approaches infinity, the output decreases without bound. As x approaches negative infinity, the output increases without bound. In symbolic form, we would write

as   x ,   f ( x )   as   x ,   f ( x )
Graph of f(x)=-x^9.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

0.037 than find sin and tan?
Jon Reply
cos24/25 then find sin and tan
Deepak Reply
tan20?×tan40?×tan80?
Santosh Reply
At the start of a trip, the odometer on a car read 21,395. At the end of the trip, 13.5 hours later, the odometer read 22,125. Assume the scale on the odometer is in miles. What is the average speed the car traveled during this trip?
Kimberly Reply
-3 and -2
Julberte Reply
tan(?cosA)=cot(?sinA) then prove cos(A-?/4)=1/2?2
Chirag Reply
tan(pi.cosA)=cot(?sinA) then prove cos(A-?/4)=1/2?2
Chirag Reply
sin x(1+tan x)+cos x(1+cot x) = sec x +cosec
Ankit Reply
let p(x)xq
Sophie Reply
To the nearest whole number, what was the initial population in the culture?
Cheyenne Reply
do posible if one line is parallel
Fran Reply
The length is one inch more than the width, which is one inch more than the height. The volume is 268.125 cubic inches.
Vamprincess Reply
Using Earth’s time of 1 year and mean distance of 93 million miles, find the equation relating ?T??T? and ?a.?
James Reply
cos(x-45)°=Sin x ;x=?
Samaresh Reply
10-n ft
Nalin Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask