<< Chapter < Page Chapter >> Page >
Graph of three functions, h(x)=x^2 in green, g(x)=x^4 in orange, and f(x)=x^6 in blue.
Even-power functions

To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol for positive infinity and −∞ for negative infinity. When we say that “ x approaches infinity,” which can be symbolically written as x , we are describing a behavior; we are saying that x is increasing without bound.

With the positive even-power function, as the input increases or decreases without bound, the output values become very large, positive numbers. Equivalently, we could describe this behavior by saying that as x approaches positive or negative infinity, the f ( x ) values increase without bound. In symbolic form, we could write

as  x ± ,   f ( x )

[link] shows the graphs of f ( x ) = x 3 , g ( x ) = x 5 , and h ( x ) = x 7 , which are all power functions with odd, whole-number powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the power increases, the graphs flatten near the origin and become steeper away from the origin.

Graph of three functions, f(x)=x^3 in green, g(x)=x^5 in orange, and h(x)=x^7 in blue.
Odd-power functions

These examples illustrate that functions of the form f ( x ) = x n reveal symmetry of one kind or another. First, in [link] we see that even functions of the form f ( x ) = x n n even, are symmetric about the y - axis. In [link] we see that odd functions of the form f ( x ) = x n n  odd, are symmetric about the origin.

For these odd power functions, as x approaches negative infinity, f ( x ) decreases without bound. As x approaches positive infinity, f ( x ) increases without bound. In symbolic form we write

as   x ,   f ( x )   as   x ,   f ( x )

The behavior of the graph of a function as the input values get very small ( x ) and get very large ( x ) is referred to as the end behavior    of the function. We can use words or symbols to describe end behavior.

[link] shows the end behavior of power functions in the form f ( x ) = k x n where n is a non-negative integer depending on the power and the constant.

Graph of an even-powered function with a positive constant. As x goes to negative infinity, the function goes to positive infinity; as x goes to positive infinity, the function goes to positive infinity. Graph of an odd-powered function with a positive constant. As x goes to negative infinity, the function goes to positive infinity; as x goes to positive infinity, the function goes to negative infinity. Graph of an even-powered function with a negative constant. As x goes to negative infinity, the function goes to negative infinity; as x goes to positive infinity, the function goes to negative infinity. Graph of an odd-powered function with a negative constant. As x goes to negative infinity, the function goes to negative infinity; as x goes to positive infinity, the function goes to negative infinity.

Given a power function f ( x ) = k x n where n is a non-negative integer, identify the end behavior.

  1. Determine whether the power is even or odd.
  2. Determine whether the constant is positive or negative.
  3. Use [link] to identify the end behavior.

Identifying the end behavior of a power function

Describe the end behavior of the graph of f ( x ) = x 8 .

The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As x approaches infinity, the output (value of f ( x ) ) increases without bound. We write as x , f ( x ) . As x approaches negative infinity, the output increases without bound. In symbolic form, as x ,   f ( x ) . We can graphically represent the function as shown in [link] .

Graph of f(x)=x^8.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Identifying the end behavior of a power function.

Describe the end behavior of the graph of f ( x ) = x 9 .

The exponent of the power function is 9 (an odd number). Because the coefficient is –1 (negative), the graph is the reflection about the x - axis of the graph of f ( x ) = x 9 . [link] shows that as x approaches infinity, the output decreases without bound. As x approaches negative infinity, the output increases without bound. In symbolic form, we would write

as   x ,   f ( x )   as   x ,   f ( x )
Graph of f(x)=-x^9.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

sin theta=3/4.prove that sec square theta barabar 1 + tan square theta by cosec square theta minus cos square theta
Umesh Reply
I want to know trigonometry but I can't understand it anyone who can help
Siyabonga Reply
Yh
Idowu
which part of trig?
Nyemba
functions
Siyabonga
trigonometry
Ganapathi
differentiation doubhts
Ganapathi
hi
Ganapathi
hello
Brittany
Prove that 4sin50-3tan 50=1
Sudip Reply
f(x)= 1 x    f(x)=1x  is shifted down 4 units and to the right 3 units.
Sebit Reply
f (x) = −3x + 5 and g (x) = x − 5 /−3
Sebit
what are real numbers
Marty Reply
I want to know partial fraction Decomposition.
Adama Reply
classes of function in mathematics
Yazidu Reply
divide y2_8y2+5y2/y2
Sumanth Reply
wish i knew calculus to understand what's going on 🙂
Dashawn Reply
@dashawn ... in simple terms, a derivative is the tangent line of the function. which gives the rate of change at that instant. to calculate. given f(x)==ax^n. then f'(x)=n*ax^n-1 . hope that help.
Christopher
thanks bro
Dashawn
maybe when i start calculus in a few months i won't be that lost 😎
Dashawn
what's the derivative of 4x^6
Axmed Reply
24x^5
James
10x
Axmed
24X^5
Taieb
Thanks for this helpfull app
Axmed Reply
secA+tanA=2√5,sinA=?
richa Reply
tan2a+tan2a=√3
Rahulkumar
classes of function
Yazidu
if sinx°=sin@, then @ is - ?
NAVJIT Reply
the value of tan15°•tan20°•tan70°•tan75° -
NAVJIT
0.037 than find sin and tan?
Jon Reply
cos24/25 then find sin and tan
Deepak Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask