# 5.1 Quadratic functions

 Page 1 / 15
In this section, you will:
• Recognize characteristics of parabolas.
• Understand how the graph of a parabola is related to its quadratic function.
• Determine a quadratic function’s minimum or maximum value.
• Solve problems involving a quadratic function’s minimum or maximum value.

Curved antennas, such as the ones shown in [link] , are commonly used to focus microwaves and radio waves to transmit television and telephone signals, as well as satellite and spacecraft communication. The cross-section of the antenna is in the shape of a parabola, which can be described by a quadratic function.

In this section, we will investigate quadratic functions, which frequently model problems involving area and projectile motion. Working with quadratic functions can be less complex than working with higher degree functions, so they provide a good opportunity for a detailed study of function behavior.

## Recognizing characteristics of parabolas

The graph of a quadratic function is a U-shaped curve called a parabola . One important feature of the graph is that it has an extreme point, called the vertex    . If the parabola opens up, the vertex represents the lowest point on the graph, or the minimum value of the quadratic function. If the parabola opens down, the vertex represents the highest point on the graph, or the maximum value . In either case, the vertex is a turning point on the graph. The graph is also symmetric with a vertical line drawn through the vertex, called the axis of symmetry    . These features are illustrated in [link] .

The y -intercept is the point at which the parabola crosses the y -axis. The x -intercepts are the points at which the parabola crosses the x -axis. If they exist, the x -intercepts represent the zeros     , or roots    , of the quadratic function, the values of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ at which $\text{\hspace{0.17em}}y=0.$

## Identifying the characteristics of a parabola

Determine the vertex, axis of symmetry, zeros, and $\text{\hspace{0.17em}}y\text{-}$ intercept of the parabola shown in [link] .

The vertex is the turning point of the graph. We can see that the vertex is at $\text{\hspace{0.17em}}\left(3,1\right).\text{\hspace{0.17em}}$ Because this parabola opens upward, the axis of symmetry is the vertical line that intersects the parabola at the vertex. So the axis of symmetry is $\text{\hspace{0.17em}}x=3.\text{\hspace{0.17em}}$ This parabola does not cross the $\text{\hspace{0.17em}}x\text{-}$ axis, so it has no zeros. It crosses the $\text{\hspace{0.17em}}y\text{-}$ axis at $\text{\hspace{0.17em}}\left(0,7\right)\text{\hspace{0.17em}}$ so this is the y -intercept.

## Understanding how the graphs of parabolas are related to their quadratic functions

The general form of a quadratic function presents the function in the form

$f\left(x\right)=a{x}^{2}+bx+c$

where $\text{\hspace{0.17em}}a,b,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}c\text{\hspace{0.17em}}$ are real numbers and $\text{\hspace{0.17em}}a\ne 0.\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}a>0,\text{\hspace{0.17em}}$ the parabola opens upward. If $\text{\hspace{0.17em}}a<0,\text{\hspace{0.17em}}$ the parabola opens downward. We can use the general form of a parabola to find the equation for the axis of symmetry.

The axis of symmetry is defined by $\text{\hspace{0.17em}}x=-\frac{b}{2a}.\text{\hspace{0.17em}}$ If we use the quadratic formula, $\text{\hspace{0.17em}}x=\frac{-b±\sqrt{{b}^{2}-4ac}}{2a},\text{\hspace{0.17em}}$ to solve $\text{\hspace{0.17em}}a{x}^{2}+bx+c=0\text{\hspace{0.17em}}$ for the $\text{\hspace{0.17em}}x\text{-}$ intercepts, or zeros, we find the value of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ halfway between them is always $\text{\hspace{0.17em}}x=-\frac{b}{2a},\text{\hspace{0.17em}}$ the equation for the axis of symmetry.

[link] represents the graph of the quadratic function written in general form as $\text{\hspace{0.17em}}y={x}^{2}+4x+3.\text{\hspace{0.17em}}$ In this form, $\text{\hspace{0.17em}}a=1,b=4,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}c=3.\text{\hspace{0.17em}}$ Because $\text{\hspace{0.17em}}a>0,\text{\hspace{0.17em}}$ the parabola opens upward. The axis of symmetry is $\text{\hspace{0.17em}}x=-\frac{4}{2\left(1\right)}=-2.\text{\hspace{0.17em}}$ This also makes sense because we can see from the graph that the vertical line $\text{\hspace{0.17em}}x=-2\text{\hspace{0.17em}}$ divides the graph in half. The vertex always occurs along the axis of symmetry. For a parabola that opens upward, the vertex occurs at the lowest point on the graph, in this instance, $\text{\hspace{0.17em}}\left(-2,-1\right).\text{\hspace{0.17em}}$ The $\text{\hspace{0.17em}}x\text{-}$ intercepts, those points where the parabola crosses the $\text{\hspace{0.17em}}x\text{-}$ axis, occur at $\text{\hspace{0.17em}}\left(-3,0\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-1,0\right).$

#### Questions & Answers

if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
madras university algebra questions papers first year B. SC. maths
Kanniyappan Reply
Hey
Rightspect
hi
chesky
Give me algebra questions
Rightspect
how to send you
Vandna
What does this mean
Michael Reply
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
rajan Reply
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
is there any case that you can have a polynomials with a degree of four?
victor
***sscc.edu/home/jdavidso/math/catalog/polynomials/fourth/fourth.html
Oliver
can you solve it step b step
Ching Reply
give me some important question in tregnamentry
Anshuman
what is linear equation with one unknown 2x+5=3
Joan Reply
-4
Joel
x=-4
Joel
x=-1
Joan
I was wrong. I didn't move all constants to the right of the equation.
Joel
x=-1
Cristian
Adityasuman x= - 1
Aditya
y=x+1
gary
what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
Shadow Reply
can I get help with this?
Wayne
Are they two separate problems or are the two functions a system?
Wilson
Also, is the first x squared in "x+4x+4"
Wilson
x^2+4x+4?
Wilson
thank you
Wilson
Please see ***imgur.com/a/lpTpDZk for solutions
Wilson
f(x)=x square-root 2 +2x+1 how to solve this value
Marjun Reply
factor or use quadratic formula
Wilson
what is algebra
Ige Reply
The product of two is 32. Find a function that represents the sum of their squares.
Paul
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
Martin Reply
how to compute this 1. g(1-x) 2. f(x-2) 3. g (-x-/5) 4. f (x)- g (x)
Yanah Reply
hi
John
hi
Grace
what sup friend
John
not much For functions, there are two conditions for a function to be the inverse function:   1--- g(f(x)) = x for all x in the domain of f     2---f(g(x)) = x for all x in the domain of g Notice in both cases you will get back to the  element that you started with, namely, x.
Grace
sin theta=3/4.prove that sec square theta barabar 1 + tan square theta by cosec square theta minus cos square theta
Umesh Reply
acha se dhek ke bata sin theta ke value
Ajay
sin theta ke ja gha sin square theta hoga
Ajay

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

 By By Lakeima Roberts By By Eric Crawford