# 5.8 Modeling using variation

 Page 1 / 14
In this section, you will:
• Solve direct variation problems.
• Solve inverse variation problems.
• Solve problems involving joint variation.

A used-car company has just offered their best candidate, Nicole, a position in sales. The position offers 16% commission on her sales. Her earnings depend on the amount of her sales. For instance, if she sells a vehicle for $4,600, she will earn$736. She wants to evaluate the offer, but she is not sure how. In this section, we will look at relationships, such as this one, between earnings, sales, and commission rate.

## Solving direct variation problems

In the example above, Nicole’s earnings can be found by multiplying her sales by her commission. The formula $\text{\hspace{0.17em}}e=0.16s\text{\hspace{0.17em}}$ tells us her earnings, $\text{\hspace{0.17em}}e,\text{\hspace{0.17em}}$ come from the product of 0.16, her commission, and the sale price of the vehicle. If we create a table, we observe that as the sales price increases, the earnings increase as well, which should be intuitive. See [link] .

$\text{\hspace{0.17em}}s\text{\hspace{0.17em}}$ , sales price $e=0.16s$ Interpretation
$4,600 $e=0.16\left(4,600\right)=736$ A sale of a$4,600 vehicle results in $736 earnings.$9,200 $e=0.16\left(9,200\right)=1,472$ A sale of a $9,200 vehicle results in$1472 earnings.
$18,400 $e=0.16\left(18,400\right)=2,944$ A sale of a$18,400 vehicle results in $2944 earnings. Notice that earnings are a multiple of sales. As sales increase, earnings increase in a predictable way. Double the sales of the vehicle from$4,600 to $9,200, and we double the earnings from$736 to \$1,472. As the input increases, the output increases as a multiple of the input. A relationship in which one quantity is a constant multiplied by another quantity is called direct variation . Each variable in this type of relationship varies directly with the other.

[link] represents the data for Nicole’s potential earnings. We say that earnings vary directly with the sales price of the car. The formula $\text{\hspace{0.17em}}y=k{x}^{n}\text{\hspace{0.17em}}$ is used for direct variation. The value $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is a nonzero constant greater than zero and is called the constant of variation . In this case, $\text{\hspace{0.17em}}k=0.16\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}n=1.\text{\hspace{0.17em}}$ We saw functions like this one when we discussed power functions.

## Direct variation

If $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ are related by an equation of the form

$\text{\hspace{0.17em}}y=k{x}^{n}\text{\hspace{0.17em}}$

then we say that the relationship is direct variation    and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly    with, or is proportional to, the $\text{\hspace{0.17em}}n\text{th}\text{\hspace{0.17em}}$ power of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ In direct variation relationships, there is a nonzero constant ratio $\text{\hspace{0.17em}}k=\frac{y}{{x}^{n}},\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}k\text{\hspace{0.17em}}$ is called the constant of variation    , which help defines the relationship between the variables.

Given a description of a direct variation problem, solve for an unknown.

1. Identify the input, $\text{\hspace{0.17em}}x,$ and the output, $\text{\hspace{0.17em}}y.\text{\hspace{0.17em}}$
2. Determine the constant of variation. You may need to divide $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ by the specified power of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ to determine the constant of variation.
3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

## Solving a direct variation problem

The quantity $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly with the cube of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}y=25\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is 6.

The general formula for direct variation with a cube is $\text{\hspace{0.17em}}y=k{x}^{3}.\text{\hspace{0.17em}}$ The constant can be found by dividing $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ by the cube of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$

$\begin{array}{ccc}\hfill k& =& \frac{y}{{x}^{3}}\hfill \\ & =& \frac{25}{{2}^{3}}\hfill \\ & =& \frac{25}{8}\hfill \end{array}$

Now use the constant to write an equation that represents this relationship.

$y=\frac{25}{8}{x}^{3}$

Substitute $\text{\hspace{0.17em}}x=6\text{\hspace{0.17em}}$ and solve for $\text{\hspace{0.17em}}y.$

$\begin{array}{ccc}\hfill y& =& \frac{25}{8}{\left(6\right)}^{3}\hfill \\ & =& 675\hfill \end{array}$

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
e power cos hyperbolic (x+iy)
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
why {2kπ} union {kπ}={kπ}?
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
what is complex numbers
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Solve 2cos x + 3sin x = 0.5