# 5.6 Rational functions  (Page 9/16)

 Page 9 / 16

## Writing rational functions

Now that we have analyzed the equations for rational functions and how they relate to a graph of the function, we can use information given by a graph to write the function. A rational function written in factored form will have an x -intercept where each factor of the numerator is equal to zero. (An exception occurs in the case of a removable discontinuity.) As a result, we can form a numerator of a function whose graph will pass through a set of x -intercepts by introducing a corresponding set of factors. Likewise, because the function will have a vertical asymptote where each factor of the denominator is equal to zero, we can form a denominator that will produce the vertical asymptotes by introducing a corresponding set of factors.

## Writing rational functions from intercepts and asymptotes

If a rational function    has x -intercepts at $\text{\hspace{0.17em}}x={x}_{1},{x}_{2},...,{x}_{n},\text{\hspace{0.17em}}$ vertical asymptotes at $\text{\hspace{0.17em}}x={v}_{1},{v}_{2},\dots ,{v}_{m},\text{\hspace{0.17em}}$ and no then the function can be written in the form:

$f\left(x\right)=a\frac{{\left(x-{x}_{1}\right)}^{{p}_{1}}{\left(x-{x}_{2}\right)}^{{p}_{2}}\cdots {\left(x-{x}_{n}\right)}^{{p}_{n}}}{{\left(x-{v}_{1}\right)}^{{q}_{1}}{\left(x-{v}_{2}\right)}^{{q}_{2}}\cdots {\left(x-{v}_{m}\right)}^{{q}_{n}}}$

where the powers $\text{\hspace{0.17em}}{p}_{i}\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}{q}_{i}\text{\hspace{0.17em}}$ on each factor can be determined by the behavior of the graph at the corresponding intercept or asymptote, and the stretch factor $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ can be determined given a value of the function other than the x -intercept or by the horizontal asymptote if it is nonzero.

Given a graph of a rational function, write the function.

1. Determine the factors of the numerator. Examine the behavior of the graph at the x -intercepts to determine the zeroes and their multiplicities. (This is easy to do when finding the “simplest” function with small multiplicities—such as 1 or 3—but may be difficult for larger multiplicities—such as 5 or 7, for example.)
2. Determine the factors of the denominator. Examine the behavior on both sides of each vertical asymptote to determine the factors and their powers.
3. Use any clear point on the graph to find the stretch factor.

## Writing a rational function from intercepts and asymptotes

Write an equation for the rational function shown in [link] .

The graph appears to have x -intercepts at $\text{\hspace{0.17em}}x=–2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}x=3.\text{\hspace{0.17em}}$ At both, the graph passes through the intercept, suggesting linear factors. The graph has two vertical asymptotes. The one at $\text{\hspace{0.17em}}x=–1\text{\hspace{0.17em}}$ seems to exhibit the basic behavior similar to $\text{\hspace{0.17em}}\frac{1}{x},\text{\hspace{0.17em}}$ with the graph heading toward positive infinity on one side and heading toward negative infinity on the other. The asymptote at $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ is exhibiting a behavior similar to $\text{\hspace{0.17em}}\frac{1}{{x}^{2}},\text{\hspace{0.17em}}$ with the graph heading toward negative infinity on both sides of the asymptote. See [link] .

We can use this information to write a function of the form

$f\left(x\right)=a\frac{\left(x+2\right)\left(x-3\right)}{\left(x+1\right){\left(x-2\right)}^{2}}$

To find the stretch factor, we can use another clear point on the graph, such as the y -intercept $\text{\hspace{0.17em}}\left(0,–2\right).$

$\begin{array}{ccc}\hfill -2& =& a\frac{\left(0+2\right)\left(0-3\right)}{\left(0+1\right){\left(0-2\right)}^{2}}\hfill \\ \hfill -2& =& a\frac{-6}{4}\hfill \\ \hfill a& =& \frac{-8}{-6}=\frac{4}{3}\hfill \end{array}$

This gives us a final function of $\text{\hspace{0.17em}}f\left(x\right)=\frac{4\left(x+2\right)\left(x-3\right)}{3\left(x+1\right){\left(x-2\right)}^{2}}.$

Access these online resources for additional instruction and practice with rational functions.

find the 15th term of the geometric sequince whose first is 18 and last term of 387
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y