# 4.1 Linear functions  (Page 13/27)

 Page 13 / 27
$f\left(x\right)=2x+4$

The slope of the line is 2, and its negative reciprocal is $\text{\hspace{0.17em}}-\frac{1}{2}.\text{\hspace{0.17em}}$ Any function with a slope of $\text{\hspace{0.17em}}-\frac{1}{2}\text{\hspace{0.17em}}$ will be perpendicular to $\text{\hspace{0.17em}}f\left(x\right).\text{\hspace{0.17em}}$ So the lines formed by all of the following functions will be perpendicular to $\text{\hspace{0.17em}}f\left(x\right).$

$\begin{array}{ccc}\hfill g\left(x\right)& =& -\frac{1}{2}x+4\hfill \\ \hfill h\left(x\right)& =& -\frac{1}{2}x+2\hfill \\ \hfill p\left(x\right)& =& -\frac{1}{2}x-\frac{1}{2}\hfill \end{array}$

As before, we can narrow down our choices for a particular perpendicular line if we know that it passes through a given point. Suppose then we want to write the equation of a line that is perpendicular to $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ and passes through the point $\text{\hspace{0.17em}}\left(4,\text{0}\right).\text{\hspace{0.17em}}$ We already know that the slope is $\text{\hspace{0.17em}}-\frac{1}{2}.\text{\hspace{0.17em}}$ Now we can use the point to find the y -intercept by substituting the given values into the slope-intercept form of a line and solving for $\text{\hspace{0.17em}}b.$

$\begin{array}{ccc}\hfill g\left(x\right)& =& mx+b\hfill \\ \hfill 0& =& -\frac{1}{2}\left(4\right)+b\hfill \\ \hfill 0& =& -2+b\hfill \\ \hfill 2& =& b\hfill \\ \hfill b& =& 2\hfill \end{array}$

The equation for the function with a slope of $\text{\hspace{0.17em}}-\frac{1}{2}\text{\hspace{0.17em}}$ and a y- intercept of 2 is

$g\left(x\right)=-\frac{1}{2}x+2$

So $\text{\hspace{0.17em}}g\left(x\right)=-\frac{1}{2}x+2\text{\hspace{0.17em}}$ is perpendicular to $\text{\hspace{0.17em}}f\left(x\right)=2x+4\text{\hspace{0.17em}}$ and passes through the point $\text{\hspace{0.17em}}\left(4,\text{0}\right).\text{\hspace{0.17em}}$ Be aware that perpendicular lines may not look obviously perpendicular on a graphing calculator unless we use the square zoom feature.

A horizontal line has a slope of zero and a vertical line has an undefined slope. These two lines are perpendicular, but the product of their slopes is not –1. Doesn’t this fact contradict the definition of perpendicular lines?

No. For two perpendicular linear functions, the product of their slopes is –1. However, a vertical line is not a function so the definition is not contradicted.

Given the equation of a function and a point through which its graph passes, write the equation of a line perpendicular to the given line.

1. Find the slope of the function.
2. Determine the negative reciprocal of the slope.
3. Substitute the new slope and the values for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ from the coordinate pair provided into $\text{\hspace{0.17em}}g\left(x\right)=mx+b.$
4. Solve for $\text{\hspace{0.17em}}b.$
5. Write the equation of the line.

## Finding the equation of a perpendicular line

Find the equation of a line perpendicular to $\text{\hspace{0.17em}}f\left(x\right)=3x+3\text{\hspace{0.17em}}$ that passes through the point $\text{\hspace{0.17em}}\left(3,\text{0}\right).$

The original line has slope $\text{\hspace{0.17em}}m=3,\text{\hspace{0.17em}}$ so the slope of the perpendicular line will be its negative reciprocal, or $\text{\hspace{0.17em}}-\frac{1}{3}.\text{\hspace{0.17em}}$ Using this slope and the given point, we can find the equation of the line.

$\begin{array}{ccc}\hfill g\left(x\right)& =& –\frac{1}{3}x+b\hfill \\ \hfill 0& =& –\frac{1}{3}\left(3\right)+b\hfill \\ \hfill 1& =& b\hfill \\ \hfill b& =& 1\hfill \end{array}$

The line perpendicular to $\text{\hspace{0.17em}}f\left(x\right)\text{\hspace{0.17em}}$ that passes through $\text{\hspace{0.17em}}\left(3,\text{0}\right)\text{\hspace{0.17em}}$ is $\text{\hspace{0.17em}}g\left(x\right)=-\frac{1}{3}x+1.$

Given the function $\text{\hspace{0.17em}}h\left(x\right)=2x-4,$ write an equation for the line passing through $\text{\hspace{0.17em}}\left(0,0\right)\text{\hspace{0.17em}}$ that is

1. parallel to $\text{\hspace{0.17em}}h\left(x\right)$
2. perpendicular to $\text{\hspace{0.17em}}h\left(x\right)$

a. $\text{\hspace{0.17em}}f\left(x\right)=2x;$ b. $\text{\hspace{0.17em}}g\left(x\right)=-\frac{1}{2}x$

Given two points on a line and a third point, write the equation of the perpendicular line that passes through the point.

1. Determine the slope of the line passing through the points.
2. Find the negative reciprocal of the slope.
3. Use the slope-intercept form or point-slope form to write the equation by substituting the known values.
4. Simplify.

## Finding the equation of a line perpendicular to a given line passing through a point

A line passes through the points $\text{\hspace{0.17em}}\left(-2,\text{6}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(4,5\right).\text{\hspace{0.17em}}$ Find the equation of a perpendicular line that passes through the point $\text{\hspace{0.17em}}\left(4,5\right).$

From the two points of the given line, we can calculate the slope of that line.

$\begin{array}{ccc}\hfill {m}_{1}& =& \frac{5-6}{4-\left(-2\right)}\hfill \\ & =& \frac{-1}{6}\hfill \\ & =& -\frac{1}{6}\hfill \end{array}$

Find the negative reciprocal of the slope.

$\begin{array}{ccc}\hfill {m}_{2}& =& \frac{-1}{-\frac{1}{6}}\hfill \\ & =& -1\left(-\frac{6}{1}\right)\hfill \\ & =& 6\hfill \end{array}$

We can then solve for the y- intercept of the line passing through the point $\text{\hspace{0.17em}}\left(4,5\right).$

$\begin{array}{ccc}\hfill g\left(x\right)& =& 6x+b\hfill \\ \hfill 5& =& 6\left(4\right)+b\hfill \\ \hfill 5& =& 24+b\hfill \\ \hfill -19& =& b\hfill \\ \hfill b& =& -19\hfill \end{array}$

The equation for the line that is perpendicular to the line passing through the two given points and also passes through point $\text{\hspace{0.17em}}\left(4,5\right)\text{\hspace{0.17em}}$ is

$y=6x-19$

what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
can I get help with this?
Wayne
Are they two separate problems or are the two functions a system?
Wilson
Also, is the first x squared in "x+4x+4"
Wilson
x^2+4x+4?
Wilson
thank you
Wilson
Wilson
f(x)=x square-root 2 +2x+1 how to solve this value
Wilson
what is algebra
The product of two is 32. Find a function that represents the sum of their squares.
Paul
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
how to compute this 1. g(1-x) 2. f(x-2) 3. g (-x-/5) 4. f (x)- g (x)
hi
John
hi
Grace
what sup friend
John
not much For functions, there are two conditions for a function to be the inverse function:   1--- g(f(x)) = x for all x in the domain of f     2---f(g(x)) = x for all x in the domain of g Notice in both cases you will get back to the  element that you started with, namely, x.
Grace
sin theta=3/4.prove that sec square theta barabar 1 + tan square theta by cosec square theta minus cos square theta
acha se dhek ke bata sin theta ke value
Ajay
sin theta ke ja gha sin square theta hoga
Ajay
I want to know trigonometry but I can't understand it anyone who can help
Yh
Idowu
which part of trig?
Nyemba
functions
Siyabonga
trigonometry
Ganapathi
differentiation doubhts
Ganapathi
hi
Ganapathi
hello
Brittany
Prove that 4sin50-3tan 50=1
False statement so you cannot prove it
Wilson
f(x)= 1 x    f(x)=1x  is shifted down 4 units and to the right 3 units.
f (x) = −3x + 5 and g (x) = x − 5 /−3
Sebit
what are real numbers
I want to know partial fraction Decomposition.
classes of function in mathematics
divide y2_8y2+5y2/y2
wish i knew calculus to understand what's going on 🙂
@dashawn ... in simple terms, a derivative is the tangent line of the function. which gives the rate of change at that instant. to calculate. given f(x)==ax^n. then f'(x)=n*ax^n-1 . hope that help.
Christopher
thanks bro
Dashawn
maybe when i start calculus in a few months i won't be that lost 😎
Dashawn
what's the derivative of 4x^6
24x^5
James
10x
Axmed
24X^5
Taieb
comment écrire les symboles de math par un clavier normal
SLIMANE