# 12.4 Rotation of axes  (Page 4/8)

 Page 4 / 8

Rewrite the $\text{\hspace{0.17em}}13{x}^{2}-6\sqrt{3}xy+7{y}^{2}=16\text{\hspace{0.17em}}$ in the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ system without the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ term.

$\frac{{{x}^{\prime }}^{2}}{4}+\frac{{{y}^{\prime }}^{2}}{1}=1$

## Graphing an equation that has no x′y′ Terms

Graph the following equation relative to the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ system:

${x}^{2}+12xy-4{y}^{2}=30$

First, we find $\text{\hspace{0.17em}}\mathrm{cot}\left(2\theta \right).$

$\begin{array}{l}\mathrm{cot}\left(2\theta \right)=\frac{A-C}{B}\hfill \\ \mathrm{cot}\left(2\theta \right)=\frac{1-\left(-4\right)}{12}\hfill \\ \mathrm{cot}\left(2\theta \right)=\frac{5}{12}\hfill \end{array}$

Because $\text{\hspace{0.17em}}\mathrm{cot}\left(2\theta \right)=\frac{5}{12},$ we can draw a reference triangle as in [link] .

$\mathrm{cot}\left(2\theta \right)=\frac{5}{12}=\frac{\text{adjacent}}{\text{opposite}}$

Thus, the hypotenuse is

$\begin{array}{r}\hfill {5}^{2}+{12}^{2}={h}^{2}\\ \hfill 25+144={h}^{2}\\ \hfill 169={h}^{2}\\ \hfill h=13\end{array}$

Next, we find and We will use half-angle identities.

Now we find $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{.\hspace{0.17em}}$

and

Now we substitute $\text{\hspace{0.17em}}x=\frac{3{x}^{\prime }-2{y}^{\prime }}{\sqrt{13}}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y=\frac{2{x}^{\prime }+3{y}^{\prime }}{\sqrt{13}}\text{\hspace{0.17em}}$ into $\text{\hspace{0.17em}}{x}^{2}+12xy-4{y}^{2}=30.$

[link] shows the graph of the hyperbola

## Identifying conics without rotating axes

Now we have come full circle. How do we identify the type of conic described by an equation? What happens when the axes are rotated? Recall, the general form of a conic is

$A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0$

If we apply the rotation formulas to this equation we get the form

${A}^{\prime }{{x}^{\prime }}^{2}+{B}^{\prime }{x}^{\prime }{y}^{\prime }+{C}^{\prime }{{y}^{\prime }}^{2}+{D}^{\prime }{x}^{\prime }+{E}^{\prime }{y}^{\prime }+{F}^{\prime }=0$

It may be shown that $\text{\hspace{0.17em}}{B}^{2}-4AC={{B}^{\prime }}^{2}-4{A}^{\prime }{C}^{\prime }.\text{\hspace{0.17em}}$ The expression does not vary after rotation, so we call the expression invariant . The discriminant, $\text{\hspace{0.17em}}{B}^{2}-4AC,$ is invariant and remains unchanged after rotation. Because the discriminant remains unchanged, observing the discriminant enables us to identify the conic section.

## Using the discriminant to identify a conic

If the equation $\text{\hspace{0.17em}}A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0\text{\hspace{0.17em}}$ is transformed by rotating axes into the equation $\text{\hspace{0.17em}}{A}^{\prime }{{x}^{\prime }}^{2}+{B}^{\prime }{x}^{\prime }{y}^{\prime }+{C}^{\prime }{{y}^{\prime }}^{2}+{D}^{\prime }{x}^{\prime }+{E}^{\prime }{y}^{\prime }+{F}^{\prime }=0,$ then $\text{\hspace{0.17em}}{B}^{2}-4AC={{B}^{\prime }}^{2}-4{A}^{\prime }{C}^{\prime }.$

The equation $\text{\hspace{0.17em}}A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0\text{\hspace{0.17em}}$ is an ellipse, a parabola, or a hyperbola, or a degenerate case of one of these.

If the discriminant, $\text{\hspace{0.17em}}{B}^{2}-4AC,$ is

• $<0,$ the conic section is an ellipse
• $=0,$ the conic section is a parabola
• $>0,$ the conic section is a hyperbola

## Identifying the conic without rotating axes

Identify the conic for each of the following without rotating axes.

1. $5{x}^{2}+2\sqrt{3}xy+2{y}^{2}-5=0$
2. $5{x}^{2}+2\sqrt{3}xy+12{y}^{2}-5=0$
1. Let’s begin by determining $\text{\hspace{0.17em}}A,B,$ and $\text{\hspace{0.17em}}C.$
$\underset{A}{\underbrace{5}}{x}^{2}+\underset{B}{\underbrace{2\sqrt{3}}}xy+\underset{C}{\underbrace{2}}{y}^{2}-5=0$

Now, we find the discriminant.

Therefore, $\text{\hspace{0.17em}}5{x}^{2}+2\sqrt{3}xy+2{y}^{2}-5=0\text{\hspace{0.17em}}$ represents an ellipse.

2. Again, let’s begin by determining $\text{\hspace{0.17em}}A,B,$ and $\text{\hspace{0.17em}}C.$
$\underset{A}{\underbrace{5}}{x}^{2}+\underset{B}{\underbrace{2\sqrt{3}}}xy+\underset{C}{\underbrace{12}}{y}^{2}-5=0$

Now, we find the discriminant.

Therefore, $\text{\hspace{0.17em}}5{x}^{2}+2\sqrt{3}xy+12{y}^{2}-5=0\text{\hspace{0.17em}}$ represents an ellipse.

what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
e power cos hyperbolic (x+iy)
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
why {2kπ} union {kπ}={kπ}?
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
what is complex numbers
give me treganamentry question
Solve 2cos x + 3sin x = 0.5
madras university algebra questions papers first year B. SC. maths
Hey
Rightspect
hi
chesky
Give me algebra questions
Rightspect
how to send you
Vandna
What does this mean
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
is there any case that you can have a polynomials with a degree of four?
victor
***sscc.edu/home/jdavidso/math/catalog/polynomials/fourth/fourth.html
Oliver
can you solve it step b step
give me some important question in tregnamentry
Anshuman
what is linear equation with one unknown 2x+5=3
-4
Joel
x=-4
Joel
x=-1
Joan
I was wrong. I didn't move all constants to the right of the equation.
Joel
x=-1
Cristian
y=x+1
gary
x=_1
Daulat
yas. x= -4
Deepak
x=-1
Deepak
2x=3-5 x=-2/2=-1
Rukmini
-1
Bobmorris