# 12.4 Rotation of axes  (Page 4/8)

 Page 4 / 8

Rewrite the $\text{\hspace{0.17em}}13{x}^{2}-6\sqrt{3}xy+7{y}^{2}=16\text{\hspace{0.17em}}$ in the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ system without the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ term.

$\frac{{{x}^{\prime }}^{2}}{4}+\frac{{{y}^{\prime }}^{2}}{1}=1$

## Graphing an equation that has no x′y′ Terms

Graph the following equation relative to the $\text{\hspace{0.17em}}{x}^{\prime }{y}^{\prime }\text{\hspace{0.17em}}$ system:

${x}^{2}+12xy-4{y}^{2}=30$

First, we find $\text{\hspace{0.17em}}\mathrm{cot}\left(2\theta \right).$

$\begin{array}{l}\mathrm{cot}\left(2\theta \right)=\frac{A-C}{B}\hfill \\ \mathrm{cot}\left(2\theta \right)=\frac{1-\left(-4\right)}{12}\hfill \\ \mathrm{cot}\left(2\theta \right)=\frac{5}{12}\hfill \end{array}$

Because $\text{\hspace{0.17em}}\mathrm{cot}\left(2\theta \right)=\frac{5}{12},$ we can draw a reference triangle as in [link] .

$\mathrm{cot}\left(2\theta \right)=\frac{5}{12}=\frac{\text{adjacent}}{\text{opposite}}$

Thus, the hypotenuse is

$\begin{array}{r}\hfill {5}^{2}+{12}^{2}={h}^{2}\\ \hfill 25+144={h}^{2}\\ \hfill 169={h}^{2}\\ \hfill h=13\end{array}$

Next, we find and We will use half-angle identities.

Now we find $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y\text{.\hspace{0.17em}}$

and

Now we substitute $\text{\hspace{0.17em}}x=\frac{3{x}^{\prime }-2{y}^{\prime }}{\sqrt{13}}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y=\frac{2{x}^{\prime }+3{y}^{\prime }}{\sqrt{13}}\text{\hspace{0.17em}}$ into $\text{\hspace{0.17em}}{x}^{2}+12xy-4{y}^{2}=30.$

[link] shows the graph of the hyperbola

## Identifying conics without rotating axes

Now we have come full circle. How do we identify the type of conic described by an equation? What happens when the axes are rotated? Recall, the general form of a conic is

$A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0$

If we apply the rotation formulas to this equation we get the form

${A}^{\prime }{{x}^{\prime }}^{2}+{B}^{\prime }{x}^{\prime }{y}^{\prime }+{C}^{\prime }{{y}^{\prime }}^{2}+{D}^{\prime }{x}^{\prime }+{E}^{\prime }{y}^{\prime }+{F}^{\prime }=0$

It may be shown that $\text{\hspace{0.17em}}{B}^{2}-4AC={{B}^{\prime }}^{2}-4{A}^{\prime }{C}^{\prime }.\text{\hspace{0.17em}}$ The expression does not vary after rotation, so we call the expression invariant . The discriminant, $\text{\hspace{0.17em}}{B}^{2}-4AC,$ is invariant and remains unchanged after rotation. Because the discriminant remains unchanged, observing the discriminant enables us to identify the conic section.

## Using the discriminant to identify a conic

If the equation $\text{\hspace{0.17em}}A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0\text{\hspace{0.17em}}$ is transformed by rotating axes into the equation $\text{\hspace{0.17em}}{A}^{\prime }{{x}^{\prime }}^{2}+{B}^{\prime }{x}^{\prime }{y}^{\prime }+{C}^{\prime }{{y}^{\prime }}^{2}+{D}^{\prime }{x}^{\prime }+{E}^{\prime }{y}^{\prime }+{F}^{\prime }=0,$ then $\text{\hspace{0.17em}}{B}^{2}-4AC={{B}^{\prime }}^{2}-4{A}^{\prime }{C}^{\prime }.$

The equation $\text{\hspace{0.17em}}A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0\text{\hspace{0.17em}}$ is an ellipse, a parabola, or a hyperbola, or a degenerate case of one of these.

If the discriminant, $\text{\hspace{0.17em}}{B}^{2}-4AC,$ is

• $<0,$ the conic section is an ellipse
• $=0,$ the conic section is a parabola
• $>0,$ the conic section is a hyperbola

## Identifying the conic without rotating axes

Identify the conic for each of the following without rotating axes.

1. $5{x}^{2}+2\sqrt{3}xy+2{y}^{2}-5=0$
2. $5{x}^{2}+2\sqrt{3}xy+12{y}^{2}-5=0$
1. Let’s begin by determining $\text{\hspace{0.17em}}A,B,$ and $\text{\hspace{0.17em}}C.$
$\underset{A}{\underbrace{5}}{x}^{2}+\underset{B}{\underbrace{2\sqrt{3}}}xy+\underset{C}{\underbrace{2}}{y}^{2}-5=0$

Now, we find the discriminant.

Therefore, $\text{\hspace{0.17em}}5{x}^{2}+2\sqrt{3}xy+2{y}^{2}-5=0\text{\hspace{0.17em}}$ represents an ellipse.

2. Again, let’s begin by determining $\text{\hspace{0.17em}}A,B,$ and $\text{\hspace{0.17em}}C.$
$\underset{A}{\underbrace{5}}{x}^{2}+\underset{B}{\underbrace{2\sqrt{3}}}xy+\underset{C}{\underbrace{12}}{y}^{2}-5=0$

Now, we find the discriminant.

Therefore, $\text{\hspace{0.17em}}5{x}^{2}+2\sqrt{3}xy+12{y}^{2}-5=0\text{\hspace{0.17em}}$ represents an ellipse.

In a triangle ABC prove that. (b+c)cosA+(c+a)cosB+(a+b)cisC=a+b+c.
give me the waec 2019 questions
the polar co-ordinate of the point (-1, -1)
prove the identites sin x ( 1+ tan x )+ cos x ( 1+ cot x )= sec x + cosec x
tanh`(x-iy) =A+iB, find A and B
B=Ai-itan(hx-hiy)
Rukmini
what is the addition of 101011 with 101010
If those numbers are binary, it's 1010101. If they are base 10, it's 202021.
Jack
extra power 4 minus 5 x cube + 7 x square minus 5 x + 1 equal to zero
the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
1+cos²A/cos²A=2cosec²A-1
test for convergence the series 1+x/2+2!/9x3
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
Ajith
exponential series
Naveen
what is subgroup
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
e power cos hyperbolic (x+iy)
10y
Michael