<< Chapter < Page Chapter >> Page >

Try it

Construct a frequency polygon of U.S. Presidents’ ages at inauguration shown in [link] .

Age at Inauguration Frequency
41.5–46.5 4
46.5–51.5 11
51.5–56.5 14
56.5–61.5 9
61.5–66.5 4
66.5–71.5 2

The first label on the x -axis is 39. This represents an interval extending from 36.5 to 41.5. Since there are no ages less than 41.5, this interval is used only to allow the graph to touch the x -axis. The point labeled 44 represents the next interval, or the first “real” interval from the table, and contains four scores. This reasoning is followed for each of the remaining intervals with the point 74 representing the interval from 71.5 to 76.5. Again, this interval contains no data and is only used so that the graph will touch the x -axis. Looking at the graph, we say that this distribution is skewed because one side of the graph does not mirror the other side.

This figure shows a graph entitled, 'President's Age at Inauguration.' The x-axis is labeled 'Ages' and is marked off at 39, 44, 49, 54, 59, 64, 69 and 74. The y-axis is labeled, 'Frequency,' and is marked off in intervals of 1 from 0 to 15. The following points are plotted and a line connects one to the other to create the frequency polygon: (39, 0), (44, 4), (49, 11), (54, 14), (59, 9), (64, 4), (69, 2), (74, 0).
Got questions? Get instant answers now!

Frequency polygons are useful for comparing distributions. This is achieved by overlaying the frequency polygons drawn for different data sets.

We will construct an overlay frequency polygon comparing the scores from [link] with the students’ final numeric grade.

Frequency Distribution for Calculus Final Test Scores
Lower Bound Upper Bound Frequency Cumulative Frequency
49.5 59.5 5 5
59.5 69.5 10 15
69.5 79.5 30 45
79.5 89.5 40 85
89.5 99.5 15 100
Frequency Distribution for Calculus Final Grades
Lower Bound Upper Bound Frequency Cumulative Frequency
49.5 59.5 10 10
59.5 69.5 10 20
69.5 79.5 30 50
79.5 89.5 45 95
89.5 99.5 5 100
This is an overlay frequency polygon that matches the supplied data. The x-axis shows the grades, and the y-axis shows the frequency.
Got questions? Get instant answers now!

Suppose that we want to study the temperature range of a region for an entire month. Every day at noon we note the temperature and write this down in a log. A variety of statistical studies could be done with this data. We could find the mean or the median temperature for the month. We could construct a histogram displaying the number of days that temperatures reach a certain range of values. However, all of these methods ignore a portion of the data that we have collected.

One feature of the data that we may want to consider is that of time. Since each date is paired with the temperature reading for the day, we don‘t have to think of the data as being random. We can instead use the times given to impose a chronological order on the data. A graph that recognizes this ordering and displays the changing temperature as the month progresses is called a time series graph.

Constructing a time series graph

To construct a time series graph, we must look at both pieces of our paired data set . We start with a standard Cartesian coordinate system. The horizontal axis is used to plot the date or time increments, and the vertical axis is used to plot the values of the variable that we are measuring. By doing this, we make each point on the graph correspond to a date and a measured quantity. The points on the graph are typically connected by straight lines in the order in which they occur.

The following data shows the Annual Consumer Price Index, each month, for ten years. Construct a time series graph for the Annual Consumer Price Index data only.

Year Jan Feb Mar Apr May Jun Jul
2003 181.7 183.1 184.2 183.8 183.5 183.7 183.9
2004 185.2 186.2 187.4 188.0 189.1 189.7 189.4
2005 190.7 191.8 193.3 194.6 194.4 194.5 195.4
2006 198.3 198.7 199.8 201.5 202.5 202.9 203.5
2007 202.416 203.499 205.352 206.686 207.949 208.352 208.299
2008 211.080 211.693 213.528 214.823 216.632 218.815 219.964
2009 211.143 212.193 212.709 213.240 213.856 215.693 215.351
2010 216.687 216.741 217.631 218.009 218.178 217.965 218.011
2011 220.223 221.309 223.467 224.906 225.964 225.722 225.922
2012 226.665 227.663 229.392 230.085 229.815 229.478 229.104
Year Aug Sep Oct Nov Dec Annual
2003 184.6 185.2 185.0 184.5 184.3 184.0
2004 189.5 189.9 190.9 191.0 190.3 188.9
2005 196.4 198.8 199.2 197.6 196.8 195.3
2006 203.9 202.9 201.8 201.5 201.8 201.6
2007 207.917 208.490 208.936 210.177 210.036 207.342
2008 219.086 218.783 216.573 212.425 210.228 215.303
2009 215.834 215.969 216.177 216.330 215.949 214.537
2010 218.312 218.439 218.711 218.803 219.179 218.056
2011 226.545 226.889 226.421 226.230 225.672 224.939
2012 230.379 231.407 231.317 230.221 229.601 229.594
This is a times series graph that matches the supplied data. The x-axis shows years from 2003 to 2012, and the y-axis shows the annual CPI.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask