<< Chapter < Page Chapter >> Page >

Products of complex numbers in polar form

If z 1 = r 1 ( cos θ 1 + i sin θ 1 ) and z 2 = r 2 ( cos θ 2 + i sin θ 2 ) , then the product of these numbers is given as:

z 1 z 2 = r 1 r 2 [ cos ( θ 1 + θ 2 ) + i sin ( θ 1 + θ 2 ) ] z 1 z 2 = r 1 r 2 cis ( θ 1 + θ 2 )

Notice that the product calls for multiplying the moduli and adding the angles.

Finding the product of two complex numbers in polar form

Find the product of z 1 z 2 , given z 1 = 4 ( cos ( 80° ) + i sin ( 80° ) ) and z 2 = 2 ( cos ( 145° ) + i sin ( 145° ) ) .

Follow the formula

z 1 z 2 = 4 2 [ cos ( 80° + 145° ) + i sin ( 80° + 145° ) ] z 1 z 2 = 8 [ cos ( 225° ) + i sin ( 225° ) ] z 1 z 2 = 8 [ cos ( 5 π 4 ) + i sin ( 5 π 4 ) ] z 1 z 2 = 8 [ 2 2 + i ( 2 2 ) ] z 1 z 2 = 4 2 4 i 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Finding quotients of complex numbers in polar form

The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the two arguments.

Quotients of complex numbers in polar form

If z 1 = r 1 ( cos θ 1 + i sin θ 1 ) and z 2 = r 2 ( cos θ 2 + i sin θ 2 ) , then the quotient of these numbers is

z 1 z 2 = r 1 r 2 [ cos ( θ 1 θ 2 ) + i sin ( θ 1 θ 2 ) ] , z 2 0 z 1 z 2 = r 1 r 2 cis ( θ 1 θ 2 ) , z 2 0

Notice that the moduli are divided, and the angles are subtracted.

Given two complex numbers in polar form, find the quotient.

  1. Divide r 1 r 2 .
  2. Find θ 1 θ 2 .
  3. Substitute the results into the formula: z = r ( cos θ + i sin θ ) . Replace r with r 1 r 2 , and replace θ with θ 1 θ 2 .
  4. Calculate the new trigonometric expressions and multiply through by r .

Finding the quotient of two complex numbers

Find the quotient of z 1 = 2 ( cos ( 213° ) + i sin ( 213° ) ) and z 2 = 4 ( cos ( 33° ) + i sin ( 33° ) ) .

Using the formula, we have

z 1 z 2 = 2 4 [ cos ( 213° 33° ) + i sin ( 213° 33° ) ] z 1 z 2 = 1 2 [ cos ( 180° ) + i sin ( 180° ) ] z 1 z 2 = 1 2 [ 1 + 0 i ] z 1 z 2 = 1 2 + 0 i z 1 z 2 = 1 2
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the product and the quotient of z 1 = 2 3 ( cos ( 150° ) + i sin ( 150° ) ) and z 2 = 2 ( cos ( 30° ) + i sin ( 30° ) ) .

z 1 z 2 = 4 3 ; z 1 z 2 = 3 2 + 3 2 i

Got questions? Get instant answers now!

Finding powers of complex numbers in polar form

Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem    . It states that, for a positive integer n , z n is found by raising the modulus to the n th power and multiplying the argument by n . It is the standard method used in modern mathematics.

De moivre’s theorem

If z = r ( cos θ + i sin θ ) is a complex number, then

z n = r n [ cos ( n θ ) + i sin ( n θ ) ] z n = r n cis ( n θ )

where n is a positive integer.

Evaluating an expression using de moivre’s theorem

Evaluate the expression ( 1 + i ) 5 using De Moivre’s Theorem.

Since De Moivre’s Theorem applies to complex numbers written in polar form, we must first write ( 1 + i ) in polar form. Let us find r .

r = x 2 + y 2 r = ( 1 ) 2 + ( 1 ) 2 r = 2

Then we find θ . Using the formula tan θ = y x gives

tan θ = 1 1 tan θ = 1 θ = π 4

Use De Moivre’s Theorem to evaluate the expression.

( a + b i ) n = r n [ cos ( n θ ) + i sin ( n θ ) ] ( 1 + i ) 5 = ( 2 ) 5 [ cos ( 5 π 4 ) + i sin ( 5 π 4 ) ] ( 1 + i ) 5 = 4 2 [ cos ( 5 π 4 ) + i sin ( 5 π 4 ) ] ( 1 + i ) 5 = 4 2 [ 2 2 + i ( 2 2 ) ] ( 1 + i ) 5 = 4 4 i
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Finding roots of complex numbers in polar form

To find the n th root of a complex number in polar form, we use the n th Root Theorem or De Moivre’s Theorem    and raise the complex number to a power with a rational exponent. There are several ways to represent a formula for finding n th roots of complex numbers in polar form.

The n Th root theorem

To find the n th root of a complex number in polar form, use the formula given as

z 1 n = r 1 n [ cos ( θ n + 2 k π n ) + i sin ( θ n + 2 k π n ) ]

where k = 0 , 1 , 2 , 3 , . . . , n 1. We add 2 k π n to θ n in order to obtain the periodic roots.

Questions & Answers

the gradient function of a curve is 2x+4 and the curve passes through point (1,4) find the equation of the curve
Kc Reply
1+cos²A/cos²A=2cosec²A-1
Ramesh Reply
test for convergence the series 1+x/2+2!/9x3
success Reply
a man walks up 200 meters along a straight road whose inclination is 30 degree.How high above the starting level is he?
Lhorren Reply
100 meters
Kuldeep
Find that number sum and product of all the divisors of 360
jancy Reply
answer
Ajith
exponential series
Naveen
what is subgroup
Purshotam Reply
Prove that: (2cos&+1)(2cos&-1)(2cos2&-1)=2cos4&+1
Macmillan Reply
e power cos hyperbolic (x+iy)
Vinay Reply
10y
Michael
tan hyperbolic inverse (x+iy)=alpha +i bita
Payal Reply
prove that cos(π/6-a)*cos(π/3+b)-sin(π/6-a)*sin(π/3+b)=sin(a-b)
Tejas Reply
why {2kπ} union {kπ}={kπ}?
Huy Reply
why is {2kπ} union {kπ}={kπ}? when k belong to integer
Huy
if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
Trilochan Reply
what is complex numbers
Ayushi Reply
Please you teach
Dua
Yes
ahmed
Thank you
Dua
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask