<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe how rays change direction upon entering a medium
  • Apply the law of refraction in problem solving

You may often notice some odd things when looking into a fish tank. For example, you may see the same fish appearing to be in two different places ( [link] ). This happens because light coming from the fish to you changes direction when it leaves the tank, and in this case, it can travel two different paths to get to your eyes. The changing of a light ray’s direction (loosely called bending) when it passes through substances of different refractive indices is called refraction    and is related to changes in the speed of light, v = c / n . Refraction is responsible for a tremendous range of optical phenomena, from the action of lenses to data transmission through optical fibers.

Figure a shows a drawing of a person looking at the corner of a fish tank. A fish in the corner appears as a double image of the fish, one image formed by rays passing through each of the sides meeting at the corner of the tank. Figure b shows a photograph of a similar situation.
(a) Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions when it passes from water to air. In this case, the light can reach the observer by two different paths, so the fish seems to be in two different places. This bending of light is called refraction and is responsible for many optical phenomena. (b) This image shows refraction of light from a fish near the top of a fish tank.

[link] shows how a ray of light changes direction when it passes from one medium to another. As before, the angles are measured relative to a perpendicular to the surface at the point where the light ray crosses it. (Some of the incident light is reflected from the surface, but for now we concentrate on the light that is transmitted.) The change in direction of the light ray depends on the relative values of the indices of refraction ( The Propagation of Light ) of the two media involved. In the situations shown, medium 2 has a greater index of refraction than medium 1. Note that as shown in [link] (a), the direction of the ray moves closer to the perpendicular when it progresses from a medium with a lower index of refraction to one with a higher index of refraction. Conversely, as shown in [link] (b), the direction of the ray moves away from the perpendicular when it progresses from a medium with a higher index of refraction to one with a lower index of refraction. The path is exactly reversible.

The figure is an illustration of the refraction of light at an interface between two media. In both figures, medium 1 is above medium 2 and the interface is horizontal and a ray is drawn refracting at the interface. . A line perpendicular to the interface is drawn at the point of incidence. In figure a, light is incident from above, passing from medium 1 to medium 2. In medium 1, the incident ray makes an angle of theta one to the perpendicular and the refracted ray in medium 2 makes a smaller angle theta two one to the perpendicular. In figure b, light is incident from below, passing from medium 2 to medium 1. In medium 2, the incident ray makes an angle of theta two to the perpendicular and the refracted ray in medium 1 makes a larger angle theta one to the perpendicular. Theta one in figure a is equal to the angle theta one in figure b. Likewise, theta two in figure a is equal to the angle theta two in figure b.
The change in direction of a light ray depends on how the index of refraction changes when it crosses from one medium to another. In the situations shown here, the index of refraction is greater in medium 2 than in medium 1. (a) A ray of light moves closer to the perpendicular when entering a medium with a higher index of refraction. (b) A ray of light moves away from the perpendicular when entering a medium with a lower index of refraction.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the speed changes. For a ray at a given incident angle, a large change in speed causes a large change in direction and thus a large change in angle. The exact mathematical relationship is the law of refraction    , or Snell’s law , after the Dutch mathematician Willebrord Snell (1591–1626), who discovered it in 1621. The law of refraction is stated in equation form as

Questions & Answers

as a free falling object increases speed what is happening to the acceleration
Success Reply
of course g is constant
Alwielland
acceleration also inc
Usman
photo electrons doesn't emmit when electrons are free to move on surface of metal why?
Rafi Reply
What would be the minimum work function of a metal have to be for visible light(400-700)nm to ejected photoelectrons?
Mohammed Reply
give any fix value to wave length
Rafi
40 cm into change mm
Arhaan Reply
40cm=40.0×10^-2m =400.0×10^-3m =400mm. that cap(^) I have used above is to the power.
Prema
i.e. 10to the power -2 in the first line and 10 to the power -3 in the the second line.
Prema
there is mistake in my first msg correction is 40cm=40.0×10^-2m =400.0×10^-3m =400mm. sorry for the mistake friends.
Prema
40cm=40.0×10^-2m =400.0×10^-3m =400mm.
Prema
this msg is out of mistake. sorry friends​.
Prema
what is physics?
sisay Reply
why we have physics
Anil Reply
because is the study of mater and natural world
John
because physics is nature. it explains the laws of nature. some laws already discovered. some laws yet to be discovered.
Yoblaze
is this a physics forum
Physics Reply
explain l-s coupling
Depk Reply
how can we say dirac equation is also called a relativistic equation in one word
preeti Reply
what is the electronic configration of Al
usman Reply
what's the signeficance of dirac equetion.?
Sibghat Reply
what is the effect of heat on refractive index
Nepal Reply
As refractive index depend on other factors also but if we supply heat on any system or media its refractive index decrease. i.e. it is inversely proportional to the heat.
ganesh
you are correct
Priyojit
law of multiple
Wahid
if we heated the ice then the refractive index be change from natural water
Nepal
can someone explain normalization condition
Priyojit Reply
please tell
Swati
yes
Chemist
1 millimeter is How many metres
Darling Reply
1millimeter =0.001metre
Gitanjali
The photoelectric effect is the emission of electrons when light shines on a material. 
Chris Reply
Practice Key Terms 2

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask