<< Chapter < Page Chapter >> Page >
U B = 1.9 × 10 −23 J .

At a room temperature of 27 °C , the thermal energy per atom is

U T k T = ( 1.38 × 10 −23 J/K ) ( 300 K ) = 4.1 × 10 −21 J ,

which is about 220 times greater than U B . Clearly, energy exchanges in thermal collisions can seriously interfere with the alignment of the magnetic dipoles. As a result, only a small fraction of the dipoles is aligned at any instant.

The four sketches of [link] furnish a simple model of this alignment process. In part (a), before the field of the solenoid (not shown) containing the paramagnetic sample is applied, the magnetic dipoles are randomly oriented and there is no net magnetic dipole moment associated with the material. With the introduction of the field, a partial alignment of the dipoles takes place, as depicted in part (b). The component of the net magnetic dipole moment that is perpendicular to the field vanishes. We may then represent the sample by part (c), which shows a collection of magnetic dipoles completely aligned with the field. By treating these dipoles as current loops, we can picture the dipole alignment as equivalent to a current around the surface of the material, as in part (d). This fictitious surface current produces its own magnetic field, which enhances the field of the solenoid.

Figure a shows a rod with randomly oriented magnetic dipoles. Figure b shows domains that got partially oriented after the magnetic field was applied along the axis of the rod. Figure c shows fully oriented domains. Figure d shows that the dipoles are aligned within the individual domains and are equivalent to a current around the surface of the material. This surface current produces its own magnetic field which enhances the field of the solenoid.
The alignment process in a paramagnetic material filling a solenoid (not shown). (a) Without an applied field, the magnetic dipoles are randomly oriented. (b) With a field, partial alignment occurs. (c) An equivalent representation of part (b). (d) The internal currents cancel, leaving an effective surface current that produces a magnetic field similar to that of a finite solenoid.

We can express the total magnetic field B in the material as

B = B 0 + B m ,

where B 0 is the field due to the current I 0 in the solenoid and B m is the field due to the surface current I m around the sample. Now B m is usually proportional to B 0 , a fact we express by

B m = χ B 0 ,

where χ is a dimensionless quantity called the magnetic susceptibility    . Values of χ for some paramagnetic materials are given in [link] . Since the alignment of magnetic dipoles is so weak, χ is very small for paramagnetic materials. By combining [link] and [link] , we obtain:

B = B 0 + χ B 0 = ( 1 + χ ) B 0 .

For a sample within an infinite solenoid, this becomes

B = ( 1 + χ ) μ 0 n I .

This expression tells us that the insertion of a paramagnetic material into a solenoid increases the field by a factor of ( 1 + χ ) . However, since χ is so small, the field isn’t enhanced very much.

The quantity

μ = ( 1 + χ ) μ 0 .

is called the magnetic permeability of a material. In terms of μ , [link] can be written as

B = μ n I

for the filled solenoid.

*Note: Unless otherwise specified, values given are for room temperature.
Magnetic susceptibilities
Paramagnetic Materials χ Diamagnetic Materials χ
Aluminum 2.2 × 10 −5 Bismuth −1.7 × 10 −5
Calcium 1.4 × 10 −5 Carbon (diamond) −2.2 × 10 −5
Chromium 3.1 × 10 −4 Copper −9.7 × 10 −6
Magnesium 1.2 × 10 −5 Lead −1.8 × 10 −5
Oxygen gas (1 atm) 1.8 × 10 −6 Mercury −2.8 × 10 −5
Oxygen liquid (90 K) 3.5 × 10 −3 Hydrogen gas (1 atm) −2.2 × 10 −9
Tungsten 6.8 × 10 −5 Nitrogen gas (1 atm) −6.7 × 10 −9
Air (1 atm) 3.6 × 10 −7 Water −9.1 × 10 −6

Diamagnetic materials

A magnetic field always induces a magnetic dipole in an atom. This induced dipole points opposite to the applied field, so its magnetic field is also directed opposite to the applied field. In paramagnetic and ferromagnetic materials, the induced magnetic dipole is masked by much stronger permanent magnetic dipoles of the atoms. However, in diamagnetic materials, whose atoms have no permanent magnetic dipole moments, the effect of the induced dipole is observable.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask