<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Determine the angular frequency of oscillation for a resistor, inductor, capacitor ( R L C ) series circuit
  • Relate the R L C circuit to a damped spring oscillation

When the switch is closed in the RLC circuit    of [link] (a), the capacitor begins to discharge and electromagnetic energy is dissipated by the resistor at a rate i 2 R . With U given by [link] , we have

d U d t = q C d q d t + L i d i d t = i 2 R

where i and q are time-dependent functions. This reduces to

L d 2 q d t 2 + R d q d t + 1 C q = 0 .
Figure a is a circuit with a capacitor, an inductor and a resistor in series with each other. They are also in series with a switch, which is open. Figure b shows the graph of charge versus time. The charge is at maximum value, q0, at t=0. The curve is similar to a sine wave that reduces in amplitude till it becomes zero.
(a) An RLC circuit. Electromagnetic oscillations begin when the switch is closed. The capacitor is fully charged initially. (b) Damped oscillations of the capacitor charge are shown in this curve of charge versus time, or q versus t . The capacitor contains a charge q 0 before the switch is closed.

This equation is analogous to

m d 2 x d t 2 + b d x d t + k x = 0 ,

which is the equation of motion for a damped mass-spring system (you first encountered this equation in Oscillations ). As we saw in that chapter, it can be shown that the solution to this differential equation takes three forms, depending on whether the angular frequency of the undamped spring is greater than, equal to, or less than b /2 m . Therefore, the result can be underdamped ( k / m > b / 2 m ) , critically damped ( k / m = b / 2 m ) , or overdamped ( k / m < b / 2 m ) . By analogy, the solution q ( t ) to the RLC differential equation has the same feature. Here we look only at the case of under-damping. By replacing m by L , b by R , k by 1/ C , and x by q in [link] , and assuming 1 / L C > R / 2 L , we obtain

q ( t ) = q 0 e R t / 2 L cos ( ω t + ϕ )

where the angular frequency of the oscillations is given by

ω = 1 L C ( R 2 L ) 2

This underdamped solution is shown in [link] (b). Notice that the amplitude of the oscillations decreases as energy is dissipated in the resistor. [link] can be confirmed experimentally by measuring the voltage across the capacitor as a function of time. This voltage, multiplied by the capacitance of the capacitor, then gives q ( t ).

Try an interactive circuit construction kit that allows you to graph current and voltage as a function of time. You can add inductors and capacitors to work with any combination of R , L , and C circuits with both dc and ac sources.

Try out a circuit-based java applet website that has many problems with both dc and ac sources that will help you practice circuit problems.

Check Your Understanding In an RLC circuit, L = 5.0 mH , C = 6.0 μ F , and R = 200 Ω . (a) Is the circuit underdamped, critically damped, or overdamped? (b) If the circuit starts oscillating with a charge of 3.0 × 10 −3 C on the capacitor, how much energy has been dissipated in the resistor by the time the oscillations cease?

a. overdamped; b. 0.75 J

Got questions? Get instant answers now!

Summary

  • The underdamped solution for the capacitor charge in an RLC circuit is
    q ( t ) = q 0 e R t / 2 L cos ( ω t + ϕ ) .
  • The angular frequency given in the underdamped solution for the RLC circuit is
    ω = 1 L C ( R 2 L ) 2 .

Key equations

Mutual inductance by flux M = N 2 Φ 21 I 1 = N 1 Φ 12 I 2
Mutual inductance in circuits ε 1 = M d I 2 d t
Self-inductance in terms of magnetic flux N Φ m = L I
Self-inductance in terms of emf ε = L d I d t
Self-inductance of a solenoid L solenoid = μ 0 N 2 A l
Self-inductance of a toroid L toroid = μ 0 N 2 h 2 π ln R 2 R 1 .
Energy stored in an inductor U = 1 2 L I 2
Current as a function of time for a RL circuit I ( t ) = ε R ( 1 e t / τ L )
Time constant for a RL circuit τ L = L / R
Charge oscillation in LC circuits q ( t ) = q 0 cos ( ω t + ϕ )
Angular frequency in LC circuits ω = 1 L C
Current oscillations in LC circuits i ( t ) = ω q 0 sin ( ω t + ϕ )
Charge as a function of time in RLC circuit q ( t ) = q 0 e R t / 2 L cos ( ω t + ϕ )
Angular frequency in RLC circuit ω = 1 L C ( R 2 L ) 2

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask