<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain how energy can be stored in a magnetic field
  • Derive the equation for energy stored in a coaxial cable given the magnetic energy density

The energy of a capacitor is stored in the electric field between its plates. Similarly, an inductor has the capability to store energy, but in its magnetic field. This energy can be found by integrating the magnetic energy density    ,

u m = B 2 2 μ 0

over the appropriate volume. To understand where this formula comes from, let’s consider the long, cylindrical solenoid of the previous section. Again using the infinite solenoid approximation, we can assume that the magnetic field is essentially constant and given by B = μ 0 n I everywhere inside the solenoid. Thus, the energy stored in a solenoid or the magnetic energy density times volume is equivalent to

U = u m ( V ) = ( μ 0 n I ) 2 2 μ 0 ( A l ) = 1 2 ( μ 0 n 2 A l ) I 2 .

With the substitution of [link] , this becomes

U = 1 2 L I 2 .

Although derived for a special case, this equation gives the energy stored in the magnetic field of any inductor. We can see this by considering an arbitrary inductor through which a changing current is passing. At any instant, the magnitude of the induced emf is ε = L d i / d t , so the power absorbed by the inductor is

P = ε i = L d i d t i .

The total energy stored in the magnetic field when the current increases from 0 to I in a time interval from 0 to t can be determined by integrating this expression:

U = 0 t P d t = 0 t L d i d t i d t = L 0 l i d i = 1 2 L I 2 .

Self-inductance of a coaxial cable

[link] shows two long, concentric cylindrical shells of radii R 1 and R 2 . As discussed in Capacitance on capacitance, this configuration is a simplified representation of a coaxial cable . The capacitance per unit length of the cable has already been calculated. Now (a) determine the magnetic energy stored per unit length of the coaxial cable and (b) use this result to find the self-inductance per unit length of the cable.

Figure a shows two concentrically arranged hollow cylinders. The radius of the inner one is R1 and that of the outer one is R2. Figure 2 shows a dotted circle with radius r in between the two cylinders. Figure c shows a cylinder of length and radius r in between the two cylinders. Its thickness is dr.
(a) A coaxial cable is represented here by two hollow, concentric cylindrical conductors along which electric current flows in opposite directions. (b) The magnetic field between the conductors can be found by applying Ampère’s law to the dashed path. (c) The cylindrical shell is used to find the magnetic energy stored in a length l of the cable.

Strategy

The magnetic field both inside and outside the coaxial cable is determined by Ampère’s law. Based on this magnetic field, we can use [link] to calculate the energy density of the magnetic field. The magnetic energy is calculated by an integral of the magnetic energy density times the differential volume over the cylindrical shell. After the integration is carried out, we have a closed-form solution for part (a). The self-inductance per unit length is determined based on this result and [link] .

Solution

  1. We determine the magnetic field between the conductors by applying Ampère’s law to the dashed circular path shown in [link] (b). Because of the cylindrical symmetry, B is constant along the path, and
    B · d l = B ( 2 π r ) = μ 0 I .

    This gives us
    B = μ 0 I 2 π r .

    In the region outside the cable, a similar application of Ampère’s law shows that B = 0 , since no net current crosses the area bounded by a circular path where r > R 2 . This argument also holds when r < R 1 ; that is, in the region within the inner cylinder. All the magnetic energy of the cable is therefore stored between the two conductors. Since the energy density of the magnetic field is
    u m = B 2 2 μ 0 = μ 0 I 2 8 π 2 r 2 ,

    the energy stored in a cylindrical shell of inner radius r , outer radius r + d r , and length l (see part (c) of the figure) is
    u m = B 2 2 μ 0 = μ 0 I 2 8 π 2 r 2 .

    Thus, the total energy of the magnetic field in a length l of the cable is
    U = R 1 R 2 d U = R 1 R 2 μ 0 I 2 8 π 2 r 2 ( 2 π r l ) d r = μ 0 I 2 l 4 π ln R 2 R 1 ,

    and the energy per unit length is ( μ 0 I 2 / 4 π ) ln ( R 2 / R 1 ) .
  2. From [link] ,
    U = 1 2 L I 2 ,

    where L is the self-inductance of a length l of the coaxial cable. Equating the previous two equations, we find that the self-inductance per unit length of the cable is
    L l = μ 0 2 π ln R 2 R 1 .

Significance

The inductance per unit length depends only on the inner and outer radii as seen in the result. To increase the inductance, we could either increase the outer radius ( R 2 ) or decrease the inner radius ( R 1 ) . In the limit as the two radii become equal, the inductance goes to zero. In this limit, there is no coaxial cable. Also, the magnetic energy per unit length from part (a) is proportional to the square of the current.

Check Your Understanding How much energy is stored in the inductor of [link] after the current reaches its maximum value?

0.50 J

Got questions? Get instant answers now!

Summary

  • The energy stored in an inductor U is
    U = 1 2 L I 2 .
  • The self-inductance per unit length of coaxial cable is
    L l = μ 0 2 π ln R 2 R 1 .

Conceptual questions

Show that L I 2 / 2 has units of energy.

Got questions? Get instant answers now!

Problems

At the instant a current of 0.20 A is flowing through a coil of wire, the energy stored in its magnetic field is 6.0 × 10 −3 J . What is the self-inductance of the coil?

Got questions? Get instant answers now!

Suppose that a rectangular toroid has 2000 windings and a self-inductance of 0.040 H. If h = 0.10 m , what is the current flowing through a rectangular toroid when the energy in its magnetic field is 2.0 × 10 −6 J ?

0.01 A

Got questions? Get instant answers now!

Solenoid A is tightly wound while solenoid B has windings that are evenly spaced with a gap equal to the diameter of the wire. The solenoids are otherwise identical. Determine the ratio of the energies stored per unit length of these solenoids when the same current flows through each.

Got questions? Get instant answers now!

A 10-H inductor carries a current of 20 A. How much ice at 0 ° C could be melted by the energy stored in the magnetic field of the inductor? ( Hint : Use the value L f = 334 J/g for ice.)

6.0 g

Got questions? Get instant answers now!

A coil with a self-inductance of 3.0 H and a resistance of 100 Ω carries a steady current of 2.0 A. (a) What is the energy stored in the magnetic field of the coil? (b) What is the energy per second dissipated in the resistance of the coil?

Got questions? Get instant answers now!

A current of 1.2 A is flowing in a coaxial cable whose outer radius is five times its inner radius. What is the magnetic field energy stored in a 3.0-m length of the cable?

U m = 7.0 × 10 −7 J

Got questions? Get instant answers now!

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask