<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Establish a relationship for how the magnetic field of a solenoid varies with distance and current by using both the Biot-Savart law and Ampère’s law
  • Establish a relationship for how the magnetic field of a toroid varies with distance and current by using Ampère’s law

Two of the most common and useful electromagnetic devices are called solenoids and toroids. In one form or another, they are part of numerous instruments, both large and small. In this section, we examine the magnetic field typical of these devices.

Solenoids

A long wire wound in the form of a helical coil is known as a solenoid    . Solenoids are commonly used in experimental research requiring magnetic fields. A solenoid is generally easy to wind, and near its center, its magnetic field is quite uniform and directly proportional to the current in the wire.

[link] shows a solenoid consisting of N turns of wire tightly wound over a length L . A current I is flowing along the wire of the solenoid. The number of turns per unit length is N / L ; therefore, the number of turns in an infinitesimal length dy are ( N / L ) dy turns. This produces a current

d I = N I L d y .

We first calculate the magnetic field at the point P of [link] . This point is on the central axis of the solenoid. We are basically cutting the solenoid into thin slices that are dy thick and treating each as a current loop. Thus, dI is the current through each slice. The magnetic field d B due to the current dI in dy can be found with the help of [link] and [link] :

d B = μ 0 R 2 d I 2 ( y 2 + R 2 ) 3 / 2 j ^ = ( μ 0 I R 2 N 2 L j ^ ) d y ( y 2 + R 2 ) 3 / 2

where we used [link] to replace dI . The resultant field at P is found by integrating d B along the entire length of the solenoid. It’s easiest to evaluate this integral by changing the independent variable from y to θ . From inspection of [link] , we have:

sin θ = y y 2 + R 2 .
Figure A is a drawing of a solenoid that is a long wire wound in the shape of a helix. Figure B shows that the magnetic field at the point P on the axis of the solenoid is the net field due to all of the current loops.
(a) A solenoid is a long wire wound in the shape of a helix. (b) The magnetic field at the point P on the axis of the solenoid is the net field due to all of the current loops.

Taking the differential of both sides of this equation, we obtain

cos θ d θ = [ y 2 ( y 2 + R 2 ) 3 / 2 + 1 y 2 + R 2 ] d y = R 2 d y ( y 2 + R 2 ) 3 / 2 .

When this is substituted into the equation for d B , we have

B = μ I 0 N 2 L j ^ θ 1 θ 2 cos θ d θ = μ I 0 N 2 L ( sin θ 2 sin θ 1 ) j ^ ,

which is the magnetic field along the central axis of a finite solenoid.

Of special interest is the infinitely long solenoid, for which L . From a practical point of view, the infinite solenoid is one whose length is much larger than its radius ( L R ) . In this case, θ 1 = π 2 and θ 2 = π 2 . Then from [link] , the magnetic field along the central axis of an infinite solenoid is

B = μ 0 I N 2 L j ^ [ sin ( π / 2 ) sin ( π / 2 ) ] = μ 0 I N L j ^

or

B = μ 0 n I j ^ ,

where n is the number of turns per unit length. You can find the direction of B with a right-hand rule: Curl your fingers in the direction of the current, and your thumb points along the magnetic field in the interior of the solenoid.

We now use these properties, along with Ampère’s law, to calculate the magnitude of the magnetic field at any location inside the infinite solenoid. Consider the closed path of [link] . Along segment 1, B is uniform and parallel to the path. Along segments 2 and 4, B is perpendicular to part of the path and vanishes over the rest of it. Therefore, segments 2 and 4 do not contribute to the line integral in Ampère’s law. Along segment 3, B = 0 because the magnetic field is zero outside the solenoid. If you consider an Ampère’s law loop outside of the solenoid, the current flows in opposite directions on different segments of wire. Therefore, there is no enclosed current and no magnetic field according to Ampère’s law. Thus, there is no contribution to the line integral from segment 3. As a result, we find

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask