<< Chapter < Page Chapter >> Page >

Let’s analyze force more deeply. Suppose a physics student sits at a table, working diligently on his homework ( [link] ). What external forces act on him? Can we determine the origin of these forces?

Figure a shows a person sitting on a chair with his forearms resting on a table. Force C in the upward direction and W in the downward direction, both having equal magnitude, act along the line of his torso. Force T is in the upward direction near the person’s forearms. Force F is in the upward direction near the person’s feet. Figure b shows the free body-diagram of C and W.
(a) The forces acting on the student are due to the chair, the table, the floor, and Earth’s gravitational attraction. (b) In solving a problem involving the student, we may want to consider the forces acting along the line running through his torso. A free-body diagram for this situation is shown.

In most situations, forces are grouped into two categories: contact forces and field forces . As you might guess, contact forces are due to direct physical contact between objects. For example, the student in [link] experiences the contact forces C , F , and T , which are exerted by the chair on his posterior, the floor on his feet, and the table on his forearms, respectively. Field forces, however, act without the necessity of physical contact between objects. They depend on the presence of a “field” in the region of space surrounding the body under consideration. Since the student is in Earth’s gravitational field, he feels a gravitational force w ; in other words, he has weight.

You can think of a field as a property of space that is detectable by the forces it exerts. Scientists think there are only four fundamental force fields in nature. These are the gravitational, electromagnetic, strong nuclear, and weak fields (we consider these four forces in nature later in this text). As noted for w in [link] , the gravitational field is responsible for the weight of a body. The forces of the electromagnetic field include those of static electricity and magnetism; they are also responsible for the attraction among atoms in bulk matter. Both the strong nuclear and the weak force fields are effective only over distances roughly equal to a length of scale no larger than an atomic nucleus ( 10 −15 m ). Their range is so small that neither field has influence in the macroscopic world of Newtonian mechanics.

Contact forces are fundamentally electromagnetic. While the elbow of the student in [link] is in contact with the tabletop, the atomic charges in his skin interact electromagnetically with the charges in the surface of the table. The net (total) result is the force T . Similarly, when adhesive tape sticks to a piece of paper, the atoms of the tape are intermingled with those of the paper to cause a net electromagnetic force between the two objects. However, in the context of Newtonian mechanics, the electromagnetic origin of contact forces is not an important concern.

Vector notation for force

As previously discussed, force is a vector; it has both magnitude and direction. The SI unit of force is called the newton    (abbreviated N), and 1 N is the force needed to accelerate an object with a mass of 1 kg at a rate of 1 m/s 2 : 1 N = 1 kg · m/s 2 . An easy way to remember the size of a newton is to imagine holding a small apple; it has a weight of about 1 N.

We can thus describe a two-dimensional force in the form F = a i ^ + b j ^ (the unit vectors i ^ and j ^ indicate the direction of these forces along the x -axis and the y -axis, respectively) and a three-dimensional force in the form F = a i ^ + b j ^ + c k ^ . In [link] , let’s suppose that ice skater 1, on the left side of the figure, pushes horizontally with a force of 30.0 N to the right; we represent this as F 1 = 30.0 i ^ N . Similarly, if ice skater 2 pushes with a force of 40.0 N in the positive vertical direction shown, we would write F 2 = 40.0 j ^ N . The resultant of the two forces causes a mass to accelerate—in this case, the third ice skater. This resultant is called the net external force     F net and is found by taking the vector sum of all external forces acting on an object or system (thus, we can also represent net external force as F ):

F net = F = F 1 + F 2 +

This equation can be extended to any number of forces.

In this example, we have F net = F = F 1 + F 2 = 30.0 i ^ + 40.0 j ^ N . The hypotenuse of the triangle shown in [link] is the resultant force, or net force. It is a vector. To find its magnitude (the size of the vector, without regard to direction), we use the rule given in Vectors , taking the square root of the sum of the squares of the components:

F net = ( 30.0 N ) 2 + ( 40.0 N ) 2 = 50.0 N .

The direction is given by

θ = tan −1 ( F 2 F 1 ) = tan −1 ( 40.0 30.0 ) = 53.1 ° ,

measured from the positive x -axis, as shown in the free-body diagram in [link] (b).

Let’s suppose the ice skaters now push the third ice skater with F 1 = 3.0 i ^ + 8.0 j ^ N and F 2 = 5.0 i ^ + 4.0 j ^ N . What is the resultant of these two forces? We must recognize that force is a vector; therefore, we must add using the rules for vector addition:

F net = F 1 + F 2 = ( 3.0 i ^ + 8.0 j ^ ) + ( 5.0 i ^ + 4.0 j ^ ) = 8.0 i ^ + 12 j ^ N

Check Your Understanding Find the magnitude and direction of the net force in the ice skater example just given.

14 N, 56 ° measured from the positive x -axis

Got questions? Get instant answers now!

View this interactive simulation to learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The magnitude, angle, and components of each vector can be displayed in several formats.

Summary

  • Dynamics is the study of how forces affect the motion of objects, whereas kinematics simply describes the way objects move.
  • Force is a push or pull that can be defined in terms of various standards, and it is a vector that has both magnitude and direction.
  • External forces are any outside forces that act on a body. A free-body diagram is a drawing of all external forces acting on a body.
  • The SI unit of force is the newton (N).

Conceptual questions

What properties do forces have that allow us to classify them as vectors?

Forces are directional and have magnitude.

Got questions? Get instant answers now!

Problems

Two ropes are attached to a tree, and forces of F 1 = 2.0 i ^ + 4.0 j ^ N and F 2 = 3.0 i ^ + 6.0 j ^ N are applied. The forces are coplanar (in the same plane). (a) What is the resultant (net force) of these two force vectors? (b) Find the magnitude and direction of this net force.

a. F net = 5.0 i ^ + 10.0 j ^ N ; b. the magnitude is F net = 11 N , and the direction is θ = 63 °

Got questions? Get instant answers now!

A telephone pole has three cables pulling as shown from above, with F 1 = ( 300.0 i ^ + 500.0 j ^ ) , F 2 = −200.0 i ^ , and F 3 = −800.0 j ^ . (a) Find the net force on the telephone pole in component form. (b) Find the magnitude and direction of this net force.

Figure shows the coordinate axes, vector F1 at an angle of about 28 degrees with the positive y axis, vector F2 along the negative x axis and vector F3 along the negative y axis.
Got questions? Get instant answers now!

Two teenagers are pulling on ropes attached to a tree. The angle between the ropes is 30.0 ° . David pulls with a force of 400.0 N and Stephanie pulls with a force of 300.0 N. (a) Find the component form of the net force. (b) Find the magnitude of the resultant (net) force on the tree and the angle it makes with David’s rope.

a. F net = 660.0 i ^ + 150.0 j ^ N ; b. F net = 676.6 N at θ = 12.8 ° from David’s rope

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask