<< Chapter < Page Chapter >> Page >
Figure A shows an evenly loaded truck with the center of gravity within the area of support. Figure B shows a truck with the center of gravity outside the area of support that is close to turning over. A car in equilibrium is shown next to it for the comparison. Figure C is the schematics that shows the position of the combined center of mass, a combination of load and truck centers of mass, between the two wheels that keep the vehicle stable. Figure D is the schematics that shows the position of the combined center of mass, a combination of load and truck centers of mass, outside the two wheels that make the vehicle unstable and can cause it to tip over.
The distribution of mass affects the position of the center of mass (CM), where the weight vector w is attached. If the center of gravity is within the area of support, the truck returns to its initial position after tipping [see the left panel in (b)]. But if the center of gravity lies outside the area of support, the truck turns over [see the right panel in (b)]. Both vehicles in (b) are out of equilibrium. Notice that the car in (a) is in equilibrium: The low location of its center of gravity makes it hard to tip over.

If you tilt a box so that one edge remains in contact with the table beneath it, then one edge of the base of support becomes a pivot. As long as the center of gravity of the box remains over the base of support, gravitational torque rotates the box back toward its original position of stable equilibrium. When the center of gravity moves outside of the base of support, gravitational torque rotates the box in the opposite direction, and the box rolls over. View this demonstration to experiment with stable and unstable positions of a box.

Center of gravity of a car

A passenger car with a 2.5-m wheelbase has 52% of its weight on the front wheels on level ground, as illustrated in [link] . Where is the CM of this car located with respect to the rear axle?

Picture shows a passenger car with a 2.5-m wheelbase that has 52% of its weight on the front wheels and 48% of its weight on the rear wheels on level ground. Distance between the rear axle and the center of mass is x.
The weight distribution between the axles of a car. Where is the center of gravity located?

Strategy

We do not know the weight w of the car. All we know is that when the car rests on a level surface, 0.52 w pushes down on the surface at contact points of the front wheels and 0.48 w pushes down on the surface at contact points of the rear wheels. Also, the contact points are separated from each other by the distance d = 2.5 m . At these contact points, the car experiences normal reaction forces with magnitudes F F = 0.52 w and F R = 0.48 w on the front and rear axles, respectively. We also know that the car is an example of a rigid body in equilibrium whose entire weight w acts at its CM. The CM is located somewhere between the points where the normal reaction forces act, somewhere at a distance x from the point where F R acts. Our task is to find x . Thus, we identify three forces acting on the body (the car), and we can draw a free-body diagram for the extended rigid body, as shown in [link] .

Figure are schematics that show the mass distribution for a passenger car with a wheelbase defined as d. Car has 52% of its weight on the front wheels (labeled as Ff) and 48% on the rear wheels (labeled Fr) and is on level ground. Distance between the rear axle and the center of mass (labeled rR) is x. Distance between the front axle and the center of mass (labeled rF) is d - x.
The free-body diagram for the car clearly indicates force vectors acting on the car and distances to the center of mass (CM). When CM is selected as the pivot point, these distances are lever arms of normal reaction forces. Notice that vector magnitudes and lever arms do not need to be drawn to scale, but all quantities of relevance must be clearly labeled.

We are almost ready to write down equilibrium conditions [link] through [link] for the car, but first we must decide on the reference frame. Suppose we choose the x -axis along the length of the car, the y -axis vertical, and the z -axis perpendicular to this xy -plane. With this choice we only need to write [link] and [link] because all the y -components are identically zero. Now we need to decide on the location of the pivot point. We can choose any point as the location of the axis of rotation ( z -axis). Suppose we place the axis of rotation at CM, as indicated in the free-body diagram for the car. At this point, we are ready to write the equilibrium conditions for the car.

Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask