<< Chapter < Page Chapter >> Page >

In addition to the large synchrotrons that produce colliding beams of protons and antiprotons, there are other large electron-positron accelerators. The oldest of these was a straight-line or linear accelerator    , called the Stanford Linear Accelerator (SLAC), which accelerated particles up to 50 GeV as seen in [link] . Positrons created by the accelerator were brought to the same energy and collided with electrons in specially designed detectors. Linear accelerators use accelerating tubes similar to those in synchrotrons, but aligned in a straight line. This helps eliminate synchrotron radiation losses, which are particularly severe for electrons made to follow curved paths. CERN had an electron-positron collider appropriately called the Large Electron-Positron Collider (LEP), which accelerated particles to 100 GeV and created a collision energy of 200 GeV. It was 8.5 km in diameter, while the SLAC machine was 3.2 km long.

The schematic shows a linear accelerator about three kilometers long with magnets along its path. Electrons and positrons coming from different sources are accelerated down the linear accelerator, then are deviated by magnets to the right and left, respectively, to follow paths that circle around to meet head-on at a large device labeled mark two particle detector.
The Stanford Linear Accelerator was 3.2 km long and had the capability of colliding electron and positron beams. SLAC was also used to probe nucleons by scattering extremely short wavelength electrons from them. This produced the first convincing evidence of a quark structure inside nucleons in an experiment analogous to those performed by Rutherford long ago.

Calculating the voltage needed by the accelerator between accelerating tubes

A linear accelerator designed to produce a beam of 800-MeV protons has 2000 accelerating tubes. What average voltage must be applied between tubes (such as in the gaps in [link] ) to achieve the desired energy?

Strategy

The energy given to the proton in each gap between tubes is PE elec = qV where q is the proton’s charge and V is the potential difference (voltage) across the gap. Since q = q e = 1.6 × 10 19 C and 1 eV = 1 V 1.6 × 10 19 C , the proton gains 1 eV in energy for each volt across the gap that it passes through. The AC voltage applied to the tubes is timed so that it adds to the energy in each gap. The effective voltage is the sum of the gap voltages and equals 800 MV to give each proton an energy of 800 MeV.

Solution

There are 2000 gaps and the sum of the voltages across them is 800 MV; thus,

V gap = 800 MV 2000 = 400 kV .

Discussion

A voltage of this magnitude is not difficult to achieve in a vacuum. Much larger gap voltages would be required for higher energy, such as those at the 50-GeV SLAC facility. Synchrotrons are aided by the circular path of the accelerated particles, which can orbit many times, effectively multiplying the number of accelerations by the number of orbits. This makes it possible to reach energies greater than 1 TeV.

Got questions? Get instant answers now!

Summary

  • A variety of particle accelerators have been used to explore the nature of subatomic particles and to test predictions of particle theories.
  • Modern accelerators used in particle physics are either large synchrotrons or linear accelerators.
  • The use of colliding beams makes much greater energy available for the creation of particles, and collisions between matter and antimatter allow a greater range of final products.

Conceptual questions

The total energy in the beam of an accelerator is far greater than the energy of the individual beam particles. Why isn’t this total energy available to create a single extremely massive particle?

Got questions? Get instant answers now!

Synchrotron radiation takes energy from an accelerator beam and is related to acceleration. Why would you expect the problem to be more severe for electron accelerators than proton accelerators?

Got questions? Get instant answers now!

What two major limitations prevent us from building high-energy accelerators that are physically small?

Got questions? Get instant answers now!

What are the advantages of colliding-beam accelerators? What are the disadvantages?

Got questions? Get instant answers now!

Problems&Exercises

At full energy, protons in the 2.00-km-diameter Fermilab synchrotron travel at nearly the speed of light, since their energy is about 1000 times their rest mass energy.

(a) How long does it take for a proton to complete one trip around?

(b) How many times per second will it pass through the target area?

(a) 2 . 09 × 10 5 s size 12{2 "." "09" times "10" rSup { size 8{ - 5} } `s} {}

(b) 4 . 77 × 10 4 Hz size 12{4 "." "77" times "10" rSup { size 8{4} } `"Hz"} {}

Got questions? Get instant answers now!

Suppose a W size 12{W rSup { size 8{ - {}} } } {} created in a bubble chamber lives for 5 . 00 × 10 25 s size 12{5 "." "00" times "10" rSup { size 8{ - "25"} } `s} {} . What distance does it move in this time if it is traveling at 0.900 c ? Since this distance is too short to make a track, the presence of the W size 12{W rSup { size 8{ - {}} } } {} must be inferred from its decay products. Note that the time is longer than the given W size 12{W rSup { size 8{ - {}} } } {} lifetime, which can be due to the statistical nature of decay or time dilation.

Got questions? Get instant answers now!

What length track does a π + size 12{π rSup { size 8{+{}} } } {} traveling at 0.100 c leave in a bubble chamber if it is created there and lives for 2 . 60 × 10 8 s size 12{2 "." "60" times "10" rSup { size 8{ - 8} } `s} {} ? (Those moving faster or living longer may escape the detector before decaying.)

78.0 cm

Got questions? Get instant answers now!

The 3.20-km-long SLAC produces a beam of 50.0-GeV electrons. If there are 15,000 accelerating tubes, what average voltage must be across the gaps between them to achieve this energy?

Got questions? Get instant answers now!

Because of energy loss due to synchrotron radiation in the LHC at CERN, only 5.00 MeV is added to the energy of each proton during each revolution around the main ring. How many revolutions are needed to produce 7.00-TeV (7000 GeV) protons, if they are injected with an initial energy of 8.00 GeV?

1 . 40 × 10 6 size 12{1 "." "40" times "10" rSup { size 8{6} } } {}

Got questions? Get instant answers now!

A proton and an antiproton collide head-on, with each having a kinetic energy of 7.00 TeV (such as in the LHC at CERN). How much collision energy is available, taking into account the annihilation of the two masses? (Note that this is not significantly greater than the extremely relativistic kinetic energy.)

Got questions? Get instant answers now!

When an electron and positron collide at the SLAC facility, they each have 50.0 GeV kinetic energies. What is the total collision energy available, taking into account the annihilation energy? Note that the annihilation energy is insignificant, because the electrons are highly relativistic.

100 GeV

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask