<< Chapter < Page Chapter >> Page >
  • Analyze a complex circuit using Kirchhoff’s rules, using the conventions for determining the correct signs of various terms.

Many complex circuits, such as the one in [link] , cannot be analyzed with the series-parallel techniques developed in Resistors in Series and Parallel and Electromotive Force: Terminal Voltage . There are, however, two circuit analysis rules that can be used to analyze any circuit, simple or complex. These rules are special cases of the laws of conservation of charge and conservation of energy. The rules are known as Kirchhoff’s rules    , after their inventor Gustav Kirchhoff (1824–1887).

A complicated circuit diagram shows multiple resistances and voltage sources wired in series and in parallel. The circuit has three arms. The first has a cell of e m f script E sub one and internal resistance r sub one in series with a resistor R sub two. The second has a cell of e m f script E sub two and internal resistance r sub two in series with resistor R sub three. The third arm has a resistor R sub one. The three arms are connected in parallel.
This circuit cannot be reduced to a combination of series and parallel connections. Kirchhoff’s rules, special applications of the laws of conservation of charge and energy, can be used to analyze it. (Note: The script E in the figure represents electromotive force, emf.)

Kirchhoff’s rules

  • Kirchhoff’s first rule—the junction rule. The sum of all currents entering a junction must equal the sum of all currents leaving the junction.
  • Kirchhoff’s second rule—the loop rule. The algebraic sum of changes in potential around any closed circuit path (loop) must be zero.

Explanations of the two rules will now be given, followed by problem-solving hints for applying Kirchhoff’s rules, and a worked example that uses them.

Kirchhoff’s first rule

Kirchhoff’s first rule (the junction rule    ) is an application of the conservation of charge to a junction; it is illustrated in [link] . Current is the flow of charge, and charge is conserved; thus, whatever charge flows into the junction must flow out. Kirchhoff’s first rule requires that I 1 = I 2 + I 3 size 12{I rSub { size 8{1} } =I rSub { size 8{2} } +I rSub { size 8{3} } } {} (see figure). Equations like this can and will be used to analyze circuits and to solve circuit problems.

Making connections: conservation laws

Kirchhoff’s rules for circuit analysis are applications of conservation laws    to circuits. The first rule is the application of conservation of charge, while the second rule is the application of conservation of energy. Conservation laws, even used in a specific application, such as circuit analysis, are so basic as to form the foundation of that application.

This schematic drawing shows a T-junction, with one current I sub one flowing into the T and two currents I sub two and I sub three flowing out of the T junction.
The junction rule. The diagram shows an example of Kirchhoff’s first rule where the sum of the currents into a junction equals the sum of the currents out of a junction. In this case, the current going into the junction splits and comes out as two currents, so that I 1 = I 2 + I 3 size 12{I rSub { size 8{1} } =I rSub { size 8{2} } +I rSub { size 8{3} } } {} . Here I 1 size 12{I rSub { size 8{1} } } {} must be 11 A, since I 2 size 12{I rSub { size 8{2} } } {} is 7 A and I 3 size 12{I rSub { size 8{3} } } {} is 4 A.

Kirchhoff’s second rule

Kirchhoff’s second rule (the loop rule    ) is an application of conservation of energy. The loop rule is stated in terms of potential, V size 12{V} {} , rather than potential energy, but the two are related since PE elec = qV size 12{ ital "PE" rSub { size 8{"elec"} } = ital "qV"} {} . Recall that emf is the potential difference of a source when no current is flowing. In a closed loop, whatever energy is supplied by emf must be transferred into other forms by devices in the loop, since there are no other ways in which energy can be transferred into or out of the circuit. [link] illustrates the changes in potential in a simple series circuit loop.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask