<< Chapter < Page Chapter >> Page >

Kirchhoff’s second rule requires emf Ir IR 1 IR 2 = 0 size 12{"emf" - ital "Ir" - ital "IR" rSub { size 8{1} } - ital "IR" rSub { size 8{2} } =0} {} . Rearranged, this is emf = Ir + IR 1 + IR 2 size 12{"emf"= ital "Ir"+ ital "IR" rSub { size 8{1} } + ital "IR" rSub { size 8{2} } } {} , which means the emf equals the sum of the IR size 12{ ital "IR"} {} (voltage) drops in the loop.

Part a shows a schematic of a simple circuit that has a voltage source in series with two load resistors. The voltage source has an e m f, labeled script E, of eighteen volts. The voltage drops are one volt across the internal resistance and twelve volts and five volts across the two load resistances. Part b is a perspective drawing corresponding to the circuit in part a. The charge is raised in potential by the e m f and lowered by the resistances.
The loop rule. An example of Kirchhoff’s second rule where the sum of the changes in potential around a closed loop must be zero. (a) In this standard schematic of a simple series circuit, the emf supplies 18 V, which is reduced to zero by the resistances, with 1 V across the internal resistance, and 12 V and 5 V across the two load resistances, for a total of 18 V. (b) This perspective view represents the potential as something like a roller coaster, where charge is raised in potential by the emf and lowered by the resistances. (Note that the script E stands for emf.)

Applying kirchhoff’s rules

By applying Kirchhoff’s rules, we generate equations that allow us to find the unknowns in circuits. The unknowns may be currents, emfs, or resistances. Each time a rule is applied, an equation is produced. If there are as many independent equations as unknowns, then the problem can be solved. There are two decisions you must make when applying Kirchhoff’s rules. These decisions determine the signs of various quantities in the equations you obtain from applying the rules.

  1. When applying Kirchhoff’s first rule, the junction rule, you must label the current in each branch and decide in what direction it is going. For example, in [link] , [link] , and [link] , currents are labeled I 1 size 12{I rSub { size 8{1} } } {} , I 2 size 12{I rSub { size 8{2} } } {} , I 3 size 12{I rSub { size 8{3} } } {} , and I size 12{I} {} , and arrows indicate their directions. There is no risk here, for if you choose the wrong direction, the current will be of the correct magnitude but negative.
  2. When applying Kirchhoff’s second rule, the loop rule, you must identify a closed loop and decide in which direction to go around it, clockwise or counterclockwise. For example, in [link] the loop was traversed in the same direction as the current (clockwise). Again, there is no risk; going around the circuit in the opposite direction reverses the sign of every term in the equation, which is like multiplying both sides of the equation by –1.

[link] and the following points will help you get the plus or minus signs right when applying the loop rule. Note that the resistors and emfs are traversed by going from a to b. In many circuits, it will be necessary to construct more than one loop. In traversing each loop, one needs to be consistent for the sign of the change in potential. (See [link] .)

This figure shows four situations where current flows through either a resistor or a source, and the calculation of the potential change across each. The first two diagrams show the potential drop across a resistor, with the current flowing from left to right or right to left. The other two diagrams show a potential drop across a voltage source, when the terminals are in one orientation and then another.
Each of these resistors and voltage sources is traversed from a to b. The potential changes are shown beneath each element and are explained in the text. (Note that the script E stands for emf.)
  • When a resistor is traversed in the same direction as the current, the change in potential is IR size 12{- ital "IR"} {} . (See [link] .)
  • When a resistor is traversed in the direction opposite to the current, the change in potential is + IR size 12{+ ital "IR"} {} . (See [link] .)
  • When an emf is traversed from to + (the same direction it moves positive charge), the change in potential is +emf. (See [link] .)
  • When an emf is traversed from + to (opposite to the direction it moves positive charge), the change in potential is size 12{ - {}} {} emf. (See [link] .)

Questions & Answers

don't understand this
Olawale Reply
Hw
Jizel
what is wave
Charity Reply
a wave is a distirbance that transmits energy from one place ro another within or without a medium
Vincent
wave is the transfer of energy from one medium to another without the transfer of particles
ZIFAC
wave is a disturbance which transfer energy from one medium to another without causing any permanent displacement by itself
Joyfulsounds
wave is a disturbance or oscillation that travel through space and matter,accompanied by a transfer of energy
Ridwan
A wave is any disturbances in an elastic medium which carries energy from one point to another through a medium
abdul
what is harmonic motion
Nozyani
is a restoring force
Joyfulsounds
what is thermodynamics
Williams Reply
what is thermodynamics
Charity
Are the antimatters of Hadrons also Hadrons?!Does the same rule apply to Leptons?
Daniel Reply
yes. Hadrons are the elementary particles that take part in stong, electromagnetic and weak interactions. Infact only Hadrons are involved in Strong interactions and when an anti-particle of any hadron is produced, it would be a hadron-conservations laws. Leptons are involved in weak int and follow
Lalita
what is physics
Sade
physic is a pure science that deal with behavior of matter,energy & how it related to other physical properties
Ridwan
Owk. But am are Art student.
Hussaini
What happens when an aeroplanes window is opened at cruise altitude?
Theophilus Reply
what is the minimum speed for any object to travel in time?
Pankaj Reply
as per theory of relativity, minimum speed will be the speed of light
Mr.
what is physics
Lote Reply
it is just a branch of science which deals with the reasons behind the daily activities taking place everyday in our lives. it clearly states the reason in the form of laws.
sandhya
?
lkpostpost2000@yahoo
like Newton's laws , Kepler's laws etc....
sandhya
physics is the study of motion or moving things. Usually the moving things are normal items like vars or planets but sometimes it's electricity or heat that moves.
Jake
what happens when an aeroplane takes off?
Kofi Reply
it flies
Mr.
the lift generated by the wing overcome the weight of the plane(in Newton)and a net force of upward is created
Phebilia
it is a direct application of Magnus effect (which helps in throwing curve balls) the wings of plane are made in such a way that the net flow of air is more below them rather than on their upper side. So when the plane accelerates, the flaps produce the upward lift when enough velocity is obtained
Mr.
then due to lower pressure on upper part of wings helps producing an additional lift because air flows from areaof lower to the area of higher pressure
Mr.
The engines located under the wings generate thrust .. in relation thrust is a force ... which ovwrcomes or becomes greater than the weight of the plane.. remember weight is a force Weight = m x g-2 So therefore F(thrust) becomes greater than F(weight) Even if by 1Newton the plane starts lifting o
Theophilus
what happens when a ship moves
Williams
What is the sign of an acceleration that reduces the magnitude of a negative velocity? Of a positive velocity?
Conwil Reply
If it reduces the magnitude of the velocity, the acceleration sign is the opposite compared to the velocity.
Nicolas
yes
Williams
what is accerelation
John Reply
an objects tendency to speed up over time
RayRay
acceleration is the change in velocity over the change in time it would be written delta-v over delta-t.
Shii
the change in velocity V over a period of time T.
Matthew
Delta means "change in"...not period of
Shii
just kidding. it all works mathematically
Shii
except doesn't time really only change if the instantaneous speeds vary...?
Shii
and I assume we are all talking average acceleration
Shii
Hey shiii 😀
conrad
the rate of change of velocity is callaed acceleration
Amna
a=delta v/delta t
Amna
the rate of change in velocity with respect to time is acceleration
Nana
nana you r right
Indrajit
good
oguji
what is meant by lost volt
Hardeyyemih Reply
Lost volt. Lol. It is the electrical energy lost due to the nature or the envirommental conditions (temperature and pressure) that affect the cable across which the potential difference is measured.
Theophilus
What is physics?
Bedabyas Reply
physics is brance science concerned with nature and properties of matter and energy
George
sure
Okpara
yah....
kashif
physics is study of the natural phenomenon on the basis of certain laws and principles. it's like watching a game of chess and trying to understand its rules how it's played.
Ajit
awesome
Okpara
physics is study of nature and it's law
AMRITA
physics is a branch of science that deals with the study of matter ,properties of matter and energy
Lote
Branch of science (study) of matter, motion and energy
Theophilus
what is a double-slit experiment?Explain.
Daniel Reply
when you pass a wave of any kind ie sound water light ect you get an interface pattern forming on a screen behind it, where the peaks and troughs add and cancel out due to the diffraction caused by a wave traveling through the slits
Luke
double slit experiment was done by YOUNG. And it's to give out monochromatic coherent, if an incoherent wave is passing through it. And then the waves form interference fringes. The screen placed in front of the double slit is preferably a film and then in the middle where "p=0" a brighter color
navid
is formed and then the constructive interferences occur at 0 (which is the brightest band)... then a sequence of bright band (constructive interference) and dark band (destructive interference) happens and the further from the central band the lower the intensity of bright band(constructive interfe
navid
what is photoelectric effect
Godwin Reply
the emission of electrons in some materials when light of suitable frequency falls on them
Hardeyyemih
The phenomenon that involves the emission of electrons (photoelectrons) when light of appropriate wavelength and frequency is incident on the surface of a metal.
ibrahim
what is regelation
oladipupo Reply
is the process of melting under pressure and freezing when pressure is reduce
bawire
poisons ratio is which chapter
STREET_
Regelation is the phenomenon of melting under pressure and freezing again when the pressure is reduced
Theophilus
Practice Key Terms 4

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask