<< Chapter < Page Chapter >> Page >

Solution for (a)

The rotational kinetic energy is

KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find KE rot . The angular velocity ω size 12{ω} {} is

ω = 300 rev 1.00 min 2π rad 1 rev 1.00 min 60.0 s = 31.4 rad s . size 12{ω= { {"300"" rev"} over {1 "." "00 min"} } cdot { {2π" rad"} over {"1 rev"} } cdot { {1 "." "00"" min"} over {"60" "." 0" s"} } ="31" "." 4 { {"rad"} over {s} } } {}

The moment of inertia of one blade will be that of a thin rod rotated about its end, found in [link] . The total I size 12{I} {} is four times this moment of inertia, because there are four blades. Thus,

I = 4 Mℓ 2 3 = 4 × 50.0 kg 4.00 m 2 3 = 1067 kg m 2 . size 12{I=4 { {Mℓ rSup { size 8{2} } } over {3} } =4 times { { left ("50" "." 0" kg" right ) left (4 "." "00"" m" right ) rSup { size 8{2} } } over {3} } ="1067"" kg" cdot m rSup { size 8{2} } } {}

Entering ω size 12{ω} {} and I size 12{I} {} into the expression for rotational kinetic energy gives

KE rot = 0.5 ( 1067 kg m 2 ) 31.4 rad/s 2 = 5.26 × 10 5 J alignl { stack { size 12{"KE" rSub { size 8{"rot"} } =0 "." 5 left ("1067"" kg" cdot m rSup { size 8{2} } right ) left ("31" "." 4" rad/s" right ) rSup { size 8{2} } } {} #" "=5 "." "26" times "10" rSup { size 8{5} } " J" {} } } {}

Solution for (b)

Translational kinetic energy was defined in Uniform Circular Motion and Gravitation . Entering the given values of mass and velocity, we obtain

KE trans = 1 2 mv 2 = 0.5 1000 kg 20.0 m/s 2 = 2 . 00 × 10 5 J . size 12{"KE" rSub { size 8{"trans"} } = { {1} over {2} } ital "mv" rSup { size 8{2} } =0 "." 5 left ("1000"" kg" right ) left ("20" "." 0" m/s" right ) rSup { size 8{2} } =2 "." "00" times "10" rSup { size 8{5} } " J"} {}

To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

2 . 00 × 10 5 J 5 . 26 × 10 5 J = 0.380 . size 12{ { {2 "." "00" times "10" rSup { size 8{5} } " J"} over {5 "." "26" times "10" rSup { size 8{5} } " J"} } =0 "." "380"} {}

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we equate those two energies:

KE rot = PE grav size 12{"KE" rSub { size 8{"rot"} } ="PE" rSub { size 8{"grav"} } } {}

or

1 2 2 = mgh . size 12{ { {1} over {2} } Iω rSup { size 8{2} } = ital "mgh"} {}

We now solve for h size 12{h} {} and substitute known values into the resulting equation

h = 1 2 2 mg = 5.26 × 10 5 J 1000 kg 9.80 m/s 2 = 53.7 m . size 12{h= { { { size 8{1} } wideslash { size 8{2} } Iω rSup { size 8{2} } } over { ital "mg"} } = { {5 "." "26" times "10" rSup { size 8{5} } " J"} over { left ("1000"" kg" right ) left (9 "." "80"" m/s" rSup { size 8{2} } right )} } ="53" "." 7" m"} {}

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational kinetic energy in the blades.

The given figure here shows a helicopter from the Auckland Westpac Rescue Helicopter Service over a sea. A rescue diver is shown holding the iron stand bar at the bottom of the helicopter, clutching a person. In the other image just above this, the blades of the helicopter are shown with their anti-clockwise rotation direction shown with an arrow and the length of one blade is given as four meters.
The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant rotational energy into the blades. The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Making connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of KE size 12{"KE"} {} . Uniform Circular Motion and Gravitation has a detailed treatment of conservation of energy.

How thick is the soup? or why don’t all objects roll downhill at the same rate?

One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast, the soup is too thin. Why should cans of identical size and mass roll down an incline at different rates? And why should the thickest soup roll the slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest. Each can starting from rest means each starts with the same gravitational potential energy PE grav size 12{ ital "PE" rSub { size 8{ ital "grav"} } } {} , which is converted entirely to KE , provided each rolls without slipping. KE , however, can take the form of KE trans size 12{ ital "KE" rSub { size 8{ ital "trans"} } } {} or KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} , and total KE is the sum of the two. If a can rolls down a ramp, it puts part of its energy into rotation, leaving less for translation. Thus, the can goes slower than it would if it slid down. Furthermore, the thin soup does not rotate, whereas the thick soup does, because it sticks to the can. The thick soup thus puts more of the can’s original gravitational potential energy into rotation than the thin soup, and the can rolls more slowly, as seen in [link] .

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask