<< Chapter < Page Chapter >> Page >

Velocity

The velocity in the vertical direction is given by :

v y = u y - g t

An inspection of equation - 2 reveals that this equation can be used to determine velocity in vertical direction at a given time “t” or to determine time of flight “t”, if final vertical velocity is given. This assumes importance as we shall see that final vertical velocity at the maximum height becomes zero.

Projectile motion

Vertical component of velocity during motion

The equation for velocity further reveals that the magnitude of velocity is reduced by an amount “gt” after a time interval of “t” during upward motion. The projectile is decelerated in this part of motion (velocity and acceleration are in opposite direction). The reduction in the magnitude of velocity with time means that it becomes zero corresponding to a particular value of “t”. The vertical elevation corresponding to the position, when projectile stops, is maximum height that projectile attains. For this situation ( v y = 0), the time of flight “t” is obtained as :

v y = u y - g t 0 = u y - g t t = u y g

Immediately thereafter, projectile is accelerated in vertically downward direction with increasing speed. In order to appreciate variation of speed and velocity during projectile motion, we calculate the values of a projectile for successive seconds, which is projected with an initial velocity of 60 m/s making an angle of 30 0 with the horizontal. Here, vertical component of velocity is 60 sin 30 0 " i.e. 30 m/s.

-------------------------------------------------------- Time gt Velocity Magnitude of velocity(s) (m/s) (m/s) (m/s) --------------------------------------------------------0 0 30 30 1 10 20 202 20 10 10 3 30 0 04 40 -10 10 5 50 -20 206 60 -30 30 --------------------------------------------------------

Above table substantiate the observations made earlier. The magnitude of vertical velocity of the projectile first decreases during upward flight; becomes zero at maximum height; and, thereafter, picks up at the same rate during downward flight.

It is also seen from the data that each of the magnitude of vertical velocity during upward motion is regained during downward motion. In terms of velocity, for every vertical velocity there is a corresponding vertical velocity of equal magnitude, but opposite in direction.

The velocity – time plot of the motion is a straight line with negative slope. The negative slope here indicates that acceleration i.e acceleration due to gravity is directed in the opposite direction to that of positive y- direction.

Velocity – time plot

The velocity – time plot for constant acceleration in vertical direction

From the plot, we see that velocity is positive and acceleration is negative for upward journey, indicating deceleration i.e. decrease in speed.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask