<< Chapter < Page Chapter >> Page >

Equations of motion in horizontal direction

The force due to gravity has no component in horizontal direction. Since gravity is the only force acting on the projectile, this means that the motion in horizontal direction is not accelerated. Therefore, the motion in horizontal direction is an uniform motion. This implies that the component of velocity in x-direction is constant. As such, the position or displacement in x-direction at a given time “t” is :

x = u x t

Projectile motion

Horizontal displacement at a given time

This equation gives the value of horizontal position or displacement at any given instant.

Displacement of projectile

The displacement of projectile is obtained by vector addition of displacements in x and y direction. The magnitude of displacement of the projectile from the origin at any given instant is :

Displacement, OP = ( x 2 + y 2 )

Displacement in projectile motion

The angle that displacement vector subtends on x-axis is :

tan α = y x

Velocity of projectile

The velocity of projectile is obtained by vector addition of velocities in x and y direction. Since component velocities are mutually perpendicular to each other, we can find magnitude of velocity of the projectile at any given instant, applying Pythagoras theorem :

v = ( v x 2 + v y 2 )

Velocity of a projectile

The angle that the resultant velocity subtends on x-axis is :

tan β = v y v x

Problem : A ball is projected upwards with a velocity of 60 m/s at an angle 60° to the vertical. Find the velocity of the projectile after 1 second.

Solution : In order to find velocity of the projectile, we need to know the velocity in vertical and horizontal direction. Now, initial velocities in the two directions are (Note that the angle of projection is given in relation to vertical direction.):

u x = u sin θ = 60 sin 60 ° = 60 x 3 2 = 30 3 m / s u y = u cos θ = 60 cos 60 ° = 60 x 1 2 = 30 m / s

Now, velocity in horizontal direction is constant as there is no component of acceleration in this direction. Hence, velocity after "1" second is :

v x = u x = 30 3 m / s

On the other hand, the velocity in vertical direction is obtained, using equation of motion as :

v y = u y - g t v y = 30 - 10 x 1 v y = 20 m / s

The resultant velocity, v, is given by :

v = ( v x 2 + v y 2 ) v = { ( 30 3 ) 2 + ( 20 ) 2 } = ( 900 x 3 + 400 ) = 55.68 m / s

Got questions? Get instant answers now!

Equation of the path of projectile

Equation of projectile path is a relationship between “x” and “y”. The x and y – coordinates are given by equations,

y = u y t - 1 2 g t 2 x = u x t

Eliminating “t” from two equations, we have :

y = u y x u x - g x 2 2 u x 2

For a given initial velocity and angle of projection, the equation reduces to the form of y = A x + B x 2 , where A and B are constants. The equation of “y” in “x” is the equation of parabola. Hence, path of the projectile motion is a parabola. Also, putting expressions for initial velocity components u x = u cos θ and u y = u sin θ , we have :

y = ( u sin θ ) x u cos θ - g x 2 2 u 2 cos 2 θ y = x tan θ - g x 2 2 u 2 cos 2 θ

Some other forms of the equation of projectile are :

y = x tan θ - g x 2 sec 2 θ 2 u 2

y = x tan θ - g x 2 ( 1 + tan 2 θ ) 2 u 2

Exercises

A projectile with initial velocity 2 i + j is thrown in air (neglect air resistance). The velocity of the projectile before striking the ground is (consider g = 10 m / s 2 ) :

(a) i + 2 j (b) 2 i j (c) i – 2 j (d) 2 i – 2 j

The vertical component of velocity of the projectile on return to the ground is equal in magnitude to the vertical component of velocity of projection, but opposite in direction. On the other hand, horizontal component of velocity remains unaltered. Hence, we can obtain velocity on the return to the ground by simply changing the sign of vertical component in the component expression of velocity of projection.

Projectile motion

Components of velocities

v = 2 i - j

Hence, option (b) is correct.

Got questions? Get instant answers now!

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask