<< Chapter < Page Chapter >> Page >
A projectile motion involves two components of motion – vertical and horizontal. Characteristically, motion in one direction is independent of motion in another direction.

Projectile motion is a special case of two dimensional motion with constant acceleration. Here, force due to gravity moderates linear motion of an object thrown at certain angle to the vertical direction. The resulting acceleration is a constant, which is always directed in vertically downward direction.

The projectile motion emphasizes one important aspect of constant acceleration that even constant acceleration, which is essentially unidirectional, is capable to produce two dimensional motion. The basic reason is that force and initial velocity of the object are not along the same direction. The linear motion of the projected object is continuously worked upon by the gravity, which results in the change of both magnitude and direction of the velocity. A change in direction of the velocity ensures that motion is not one dimensional.

The change in magnitude and direction of the velocity is beautifully managed so that time rate of change in velocity is always directed in vertically downward direction i.e. in the direction of gravity. This aspect is shown qualitatively for the motion in the figure below as velocity change successively at the end of every second from v 1 to v 2 to v 3 and so on….. by exactly a vector, whose magnitude is equal to acceleration due to gravity “g”.

Projectile motion

Velocity of the projectile changes by acceleration vector in unit time.

Force(s) in projectile motion

Flight of base ball, golf ball etc. are examples of projectile motion. In these cases, the projectile is projected with certain force at certain angle to vertical direction. The force that initiates motion is a contact force. Once the motion of the ball is initiated, the role of contact force is over. It does not subsequently affect or change the velocity of the ball as the contact is lost.

In order to emphasize, we restate three important facts about projectile motion. First, we need to apply force at the time of projection. This force as applied by hand or by any other mechanical device, accelerates projectile briefly till it is in contact with "thrower". The moment the projectile is physically disconnected with the throwing device, it moves with a velocity, which it gained during brief contact period. The role of force responsible for imparting motion is over. Second, motion of projectile is maintained if there is no net external force (Newton's laws of motion). This would be the case for projection in force free space. The projectile is initiated into the motion with certain initial velocity, say u . Had there been no other force(s), then the ball would have moved along the dotted straight line (as shown in figure below) and might have been lost in to the space.

Projectile motion

Path of a projectile projected at an angle with horizontal direction.

Third, the projectile, once out in the space, is acted upon by the force due to gravity and air resistance. We, however, neglect the effect of air resistance for the time being and confine our study of the motion which is affected by force due to gravity acting downwards. The motion or velocity of projectile is then moderated i.e. accelerated (here, acceleration means change of speed or change of direction or both) by gravity. This is the only force. Hence, acceleration due to gravity is the only acceleration involved in the motion. This downward acceleration is a constant and is the acceleration in any projectile motion near Earth, which is not propelled or dragged.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask