<< Chapter < Page Chapter >> Page >
Resistivities ρ size 12{ρ} {} Of various materials at 20º C
Material Resistivity ρ size 12{ρ} {} ( Ω m size 12{ %OMEGA cdot m} {} )
Conductors
Silver 1 . 59 × 10 8 size 12{1 "." "59" times "10" rSup { size 8{ - 8} } } {}
Copper 1 . 72 × 10 8 size 12{1 "." "72" times "10" rSup { size 8{ - 8} } } {}
Gold 2 . 44 × 10 8 size 12{2 "." "44" times "10" rSup { size 8{ - 8} } } {}
Aluminum 2 . 65 × 10 8 size 12{2 "." "65" times "10" rSup { size 8{ - 8} } } {}
Tungsten 5 . 6 × 10 8 size 12{5 "." 6 times "10" rSup { size 8{ - 8} } } {}
Iron 9 . 71 × 10 8 size 12{9 "." "71" times "10" rSup { size 8{ - 8} } } {}
Platinum 10 . 6 × 10 8 size 12{"10" "." 6 times "10" rSup { size 8{ - 8} } } {}
Steel 20 × 10 8 size 12{"20" times "10" rSup { size 8{ - 8} } } {}
Lead 22 × 10 8 size 12{"22" times "10" rSup { size 8{ - 8} } } {}
Manganin (Cu, Mn, Ni alloy) 44 × 10 8 size 12{"44" times "10" rSup { size 8{ - 8} } } {}
Constantan (Cu, Ni alloy) 49 × 10 8 size 12{"49" times "10" rSup { size 8{ - 8} } } {}
Mercury 96 × 10 8 size 12{"96" times "10" rSup { size 8{ - 8} } } {}
Nichrome (Ni, Fe, Cr alloy) 100 × 10 8 size 12{"100" times "10" rSup { size 8{ - 8} } } {}
Semiconductors Values depend strongly on amounts and types of impurities
Carbon (pure) 3.5 × 10 5
Carbon ( 3.5 60 ) × 10 5
Germanium (pure) 600 × 10 3
Germanium ( 1 600 ) × 10 3 size 12{ \( 1 - "600" \) times "10" rSup { size 8{ - 3} } } {}
Silicon (pure) 2300
Silicon 0.1–2300
Insulators
Amber 5 × 10 14 size 12{5 times "10" rSup { size 8{"14"} } } {}
Glass 10 9 10 14 size 12{"10" rSup { size 8{9} } - "10" rSup { size 8{"14"} } } {}
Lucite >10 13 size 12{>"10" rSup { size 8{"13"} } } {}
Mica 10 11 10 15 size 12{"10" rSup { size 8{"11"} } - "10" rSup { size 8{"15"} } } {}
Quartz (fused) 75 × 10 16 size 12{"75" times "10" rSup { size 8{"16"} } } {}
Rubber (hard) 10 13 10 16 size 12{"10" rSup { size 8{"13"} } - "10" rSup { size 8{"16"} } } {}
Sulfur 10 15 size 12{"10" rSup { size 8{"15"} } } {}
Teflon >10 13 size 12{>"10" rSup { size 8{"13"} } } {}
Wood 10 8 10 14

Calculating resistor diameter: a headlight filament

A car headlight filament is made of tungsten and has a cold resistance of 0 . 350 Ω size 12{0 "." "350" %OMEGA } {} . If the filament is a cylinder 4.00 cm long (it may be coiled to save space), what is its diameter?

Strategy

We can rearrange the equation R = ρL A size 12{R = { {ρL} over {A} } } {} to find the cross-sectional area A size 12{A} {} of the filament from the given information. Then its diameter can be found by assuming it has a circular cross-section.

Solution

The cross-sectional area, found by rearranging the expression for the resistance of a cylinder given in R = ρL A size 12{R = { {ρL} over {A} } } {} , is

A = ρL R . size 12{A = { {ρL} over {R} } "."} {}

Substituting the given values, and taking ρ size 12{ρ} {} from [link] , yields

A = ( 5.6 × 10 –8 Ω m ) ( 4.00 × 10 –2 m ) 0.350 Ω = 6.40 × 10 –9 m 2 .

The area of a circle is related to its diameter D size 12{D} {} by

A = πD 2 4 . size 12{A = { {πD rSup { size 8{2} } } over {4} } "."} {}

Solving for the diameter D size 12{D} {} , and substituting the value found for A size 12{A} {} , gives

D = 2 A p 1 2 = 2 6.40 × 10 –9 m 2 3.14 1 2 = 9.0 × 10 –5 m . alignl { stack { size 12{D =" 2" left ( { {A} over {p} } right ) rSup { size 8{ { {1} over {2} } } } =" 2" left ( { {6 "." "40"´"10" rSup { size 8{ +- 9} } " m" rSup { size 8{2} } } over {3 "." "14"} } right ) rSup { size 8{ { {1} over {2} } } } } {} #=" 9" "." 0´"10" rSup { size 8{ +- 5} } " m" "." {} } } {}

Discussion

The diameter is just under a tenth of a millimeter. It is quoted to only two digits, because ρ size 12{ρ} {} is known to only two digits.

Got questions? Get instant answers now!

Temperature variation of resistance

The resistivity of all materials depends on temperature. Some even become superconductors (zero resistivity) at very low temperatures. (See [link] .) Conversely, the resistivity of conductors increases with increasing temperature. Since the atoms vibrate more rapidly and over larger distances at higher temperatures, the electrons moving through a metal make more collisions, effectively making the resistivity higher. Over relatively small temperature changes (about 100º C size 12{"100"°C} {} or less), resistivity ρ size 12{ρ} {} varies with temperature change Δ T size 12{DT} {} as expressed in the following equation

ρ = ρ 0 ( 1 + α Δ T ) , size 12{ρ = ρ rSub { size 8{0} } \( "1 "+ αΔT \) ","} {}

where ρ 0 size 12{ρ rSub { size 8{0} } } {} is the original resistivity and α size 12{α} {} is the temperature coefficient of resistivity    . (See the values of α size 12{α} {} in [link] below.) For larger temperature changes, α size 12{α} {} may vary or a nonlinear equation may be needed to find ρ size 12{ρ} {} . Note that α size 12{α} {} is positive for metals, meaning their resistivity increases with temperature. Some alloys have been developed specifically to have a small temperature dependence. Manganin (which is made of copper, manganese and nickel), for example, has α size 12{α} {} close to zero (to three digits on the scale in [link] ), and so its resistivity varies only slightly with temperature. This is useful for making a temperature-independent resistance standard, for example.

A graph for variation of resistance R with temperature T for a mercury sample is shown. The temperature T is plotted along the x axis and is measured in Kelvin, and the resistance R is plotted along the y axis and is measured in ohms. The curve starts at x equals zero and y equals zero, and coincides with the X axis until the value of temperature is four point two Kelvin, known as the critical temperature T sub c. At temperature T sub c, the curve shows a vertical rise, represented by a dotted line, until the resistance is about zero point one one ohms. After this temperature the resistance shows a nearly linear increase with temperature T.
The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask