<< Chapter < Page Chapter >> Page >
Resistivities ρ size 12{ρ} {} Of various materials at 20º C
Material Resistivity ρ size 12{ρ} {} ( Ω m size 12{ %OMEGA cdot m} {} )
Conductors
Silver 1 . 59 × 10 8 size 12{1 "." "59" times "10" rSup { size 8{ - 8} } } {}
Copper 1 . 72 × 10 8 size 12{1 "." "72" times "10" rSup { size 8{ - 8} } } {}
Gold 2 . 44 × 10 8 size 12{2 "." "44" times "10" rSup { size 8{ - 8} } } {}
Aluminum 2 . 65 × 10 8 size 12{2 "." "65" times "10" rSup { size 8{ - 8} } } {}
Tungsten 5 . 6 × 10 8 size 12{5 "." 6 times "10" rSup { size 8{ - 8} } } {}
Iron 9 . 71 × 10 8 size 12{9 "." "71" times "10" rSup { size 8{ - 8} } } {}
Platinum 10 . 6 × 10 8 size 12{"10" "." 6 times "10" rSup { size 8{ - 8} } } {}
Steel 20 × 10 8 size 12{"20" times "10" rSup { size 8{ - 8} } } {}
Lead 22 × 10 8 size 12{"22" times "10" rSup { size 8{ - 8} } } {}
Manganin (Cu, Mn, Ni alloy) 44 × 10 8 size 12{"44" times "10" rSup { size 8{ - 8} } } {}
Constantan (Cu, Ni alloy) 49 × 10 8 size 12{"49" times "10" rSup { size 8{ - 8} } } {}
Mercury 96 × 10 8 size 12{"96" times "10" rSup { size 8{ - 8} } } {}
Nichrome (Ni, Fe, Cr alloy) 100 × 10 8 size 12{"100" times "10" rSup { size 8{ - 8} } } {}
Semiconductors Values depend strongly on amounts and types of impurities
Carbon (pure) 3.5 × 10 5
Carbon ( 3.5 60 ) × 10 5
Germanium (pure) 600 × 10 3
Germanium ( 1 600 ) × 10 3 size 12{ \( 1 - "600" \) times "10" rSup { size 8{ - 3} } } {}
Silicon (pure) 2300
Silicon 0.1–2300
Insulators
Amber 5 × 10 14 size 12{5 times "10" rSup { size 8{"14"} } } {}
Glass 10 9 10 14 size 12{"10" rSup { size 8{9} } - "10" rSup { size 8{"14"} } } {}
Lucite >10 13 size 12{>"10" rSup { size 8{"13"} } } {}
Mica 10 11 10 15 size 12{"10" rSup { size 8{"11"} } - "10" rSup { size 8{"15"} } } {}
Quartz (fused) 75 × 10 16 size 12{"75" times "10" rSup { size 8{"16"} } } {}
Rubber (hard) 10 13 10 16 size 12{"10" rSup { size 8{"13"} } - "10" rSup { size 8{"16"} } } {}
Sulfur 10 15 size 12{"10" rSup { size 8{"15"} } } {}
Teflon >10 13 size 12{>"10" rSup { size 8{"13"} } } {}
Wood 10 8 10 14

Calculating resistor diameter: a headlight filament

A car headlight filament is made of tungsten and has a cold resistance of 0 . 350 Ω size 12{0 "." "350" %OMEGA } {} . If the filament is a cylinder 4.00 cm long (it may be coiled to save space), what is its diameter?

Strategy

We can rearrange the equation R = ρL A size 12{R = { {ρL} over {A} } } {} to find the cross-sectional area A size 12{A} {} of the filament from the given information. Then its diameter can be found by assuming it has a circular cross-section.

Solution

The cross-sectional area, found by rearranging the expression for the resistance of a cylinder given in R = ρL A size 12{R = { {ρL} over {A} } } {} , is

A = ρL R . size 12{A = { {ρL} over {R} } "."} {}

Substituting the given values, and taking ρ size 12{ρ} {} from [link] , yields

A = ( 5.6 × 10 –8 Ω m ) ( 4.00 × 10 –2 m ) 0.350 Ω = 6.40 × 10 –9 m 2 .

The area of a circle is related to its diameter D size 12{D} {} by

A = πD 2 4 . size 12{A = { {πD rSup { size 8{2} } } over {4} } "."} {}

Solving for the diameter D size 12{D} {} , and substituting the value found for A size 12{A} {} , gives

D = 2 A p 1 2 = 2 6.40 × 10 –9 m 2 3.14 1 2 = 9.0 × 10 –5 m . alignl { stack { size 12{D =" 2" left ( { {A} over {p} } right ) rSup { size 8{ { {1} over {2} } } } =" 2" left ( { {6 "." "40"´"10" rSup { size 8{ +- 9} } " m" rSup { size 8{2} } } over {3 "." "14"} } right ) rSup { size 8{ { {1} over {2} } } } } {} #=" 9" "." 0´"10" rSup { size 8{ +- 5} } " m" "." {} } } {}

Discussion

The diameter is just under a tenth of a millimeter. It is quoted to only two digits, because ρ size 12{ρ} {} is known to only two digits.

Got questions? Get instant answers now!

Temperature variation of resistance

The resistivity of all materials depends on temperature. Some even become superconductors (zero resistivity) at very low temperatures. (See [link] .) Conversely, the resistivity of conductors increases with increasing temperature. Since the atoms vibrate more rapidly and over larger distances at higher temperatures, the electrons moving through a metal make more collisions, effectively making the resistivity higher. Over relatively small temperature changes (about 100º C size 12{"100"°C} {} or less), resistivity ρ size 12{ρ} {} varies with temperature change Δ T size 12{DT} {} as expressed in the following equation

ρ = ρ 0 ( 1 + α Δ T ) , size 12{ρ = ρ rSub { size 8{0} } \( "1 "+ αΔT \) ","} {}

where ρ 0 size 12{ρ rSub { size 8{0} } } {} is the original resistivity and α size 12{α} {} is the temperature coefficient of resistivity    . (See the values of α size 12{α} {} in [link] below.) For larger temperature changes, α size 12{α} {} may vary or a nonlinear equation may be needed to find ρ size 12{ρ} {} . Note that α size 12{α} {} is positive for metals, meaning their resistivity increases with temperature. Some alloys have been developed specifically to have a small temperature dependence. Manganin (which is made of copper, manganese and nickel), for example, has α size 12{α} {} close to zero (to three digits on the scale in [link] ), and so its resistivity varies only slightly with temperature. This is useful for making a temperature-independent resistance standard, for example.

A graph for variation of resistance R with temperature T for a mercury sample is shown. The temperature T is plotted along the x axis and is measured in Kelvin, and the resistance R is plotted along the y axis and is measured in ohms. The curve starts at x equals zero and y equals zero, and coincides with the X axis until the value of temperature is four point two Kelvin, known as the critical temperature T sub c. At temperature T sub c, the curve shows a vertical rise, represented by a dotted line, until the resistance is about zero point one one ohms. After this temperature the resistance shows a nearly linear increase with temperature T.
The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask