<< Chapter < Page Chapter >> Page >

What is the average kinetic energy of a nitrogen molecule (N 2 ) if its rms speed is 560 m/s? At what temperature is this rms speed achieved?

(a) 7.29 × 10 -21 J; (b) 352K or 79ºC

Got questions? Get instant answers now!

What will be the ratio of kinetic energies and rms speeds of a nitrogen molecule and a helium atom at the same temperature?

Got questions? Get instant answers now!

Section summary

  • Kinetic theory is the atomistic description of gases as well as liquids and solids.
  • Kinetic theory models the properties of matter in terms of continuous random motion of atoms and molecules.
  • The ideal gas law can also be expressed as
    PV = 1 3 Nm v 2 ¯ , size 12{ ital "PV"= { {1} over {3} } ital "Nm" {overline {v rSup { size 8{2} } }} ,} {}
    where P size 12{P} {} is the pressure (average force per unit area), V size 12{V} {} is the volume of gas in the container, N size 12{N} {} is the number of molecules in the container, m size 12{m} {} is the mass of a molecule, and v 2 ¯ size 12{ {overline {v rSup { size 8{2} } }} } {} is the average of the molecular speed squared.
  • Thermal energy is defined to be the average translational kinetic energy KE ¯ size 12{ {overline {"KE"}} } {} of an atom or molecule.
  • The temperature of gases is proportional to the average translational kinetic energy of atoms and molecules.
    KE ¯ = 1 2 m v 2 ¯ = 3 2 kT size 12{ {overline {"KE"}} = { {1} over {2} } m {overline {v rSup { size 8{2} } }} = { {3} over {2} } ital "kT"} {}

    or

    v 2 ¯ = v rms = 3 kT m . size 12{ sqrt { {overline {v rSup { size 8{2} } }} } =v rSub { size 8{"rms"} } = sqrt { { {3 ital "kT"} over {m} } } "." } {}
  • The motion of individual molecules in a gas is random in magnitude and direction. However, a gas of many molecules has a predictable distribution of molecular speeds, known as the Maxwell-Boltzmann distribution .

Conceptual questions

How is momentum related to the pressure exerted by a gas? Explain on the atomic and molecular level, considering the behavior of atoms and molecules.

Got questions? Get instant answers now!

Problems&Exercises

Some incandescent light bulbs are filled with argon gas. What is v rms size 12{v rSub { size 8{"rms"} } } {} for argon atoms near the filament, assuming their temperature is 2500 K?

1 . 25 × 10 3 m/s size 12{ size 11{1 "." "25" times "10" rSup { size 8{3} } `"m/s"}} {}

Got questions? Get instant answers now!

Average atomic and molecular speeds ( v rms ) size 12{ \( v rSub { size 8{"rms"} } \) } {} are large, even at low temperatures. What is v rms size 12{v rSub { size 8{"rms"} } } {} for helium atoms at 5.00 K, just one degree above helium’s liquefaction temperature?

Got questions? Get instant answers now!

(a) What is the average kinetic energy in joules of hydrogen atoms on the 5500 º C size 12{"5500"°C} {} surface of the Sun? (b) What is the average kinetic energy of helium atoms in a region of the solar corona where the temperature is 6 . 00 × 10 5 K size 12{6 "." "00"´"10" rSup { size 8{5} } " K"} {} ?

(a) 1 . 20 × 10 19 J size 12{ size 11{1 "." "20" times "10" rSup { size 8{ - "19"} } `J}} {}

(b) 1 . 24 × 10 17 J size 12{ size 11{1 "." "24" times "10" rSup { size 8{ - "17"} } `J}} {}

Got questions? Get instant answers now!

The escape velocity of any object from Earth is 11.2 km/s. (a) Express this speed in m/s and km/h. (b) At what temperature would oxygen molecules (molecular mass is equal to 32.0 g/mol) have an average velocity v rms size 12{v rSub { size 8{"rms"} } } {} equal to Earth’s escape velocity of 11.1 km/s?

Got questions? Get instant answers now!

The escape velocity from the Moon is much smaller than from Earth and is only 2.38 km/s. At what temperature would hydrogen molecules (molecular mass is equal to 2.016 g/mol) have an average velocity v rms size 12{v rSub { size 8{"rms"} } } {} equal to the Moon’s escape velocity?

458 K size 12{ size 11{"458"`K}} {}

Got questions? Get instant answers now!

Nuclear fusion, the energy source of the Sun, hydrogen bombs, and fusion reactors, occurs much more readily when the average kinetic energy of the atoms is high—that is, at high temperatures. Suppose you want the atoms in your fusion experiment to have average kinetic energies of 6 . 40 × 10 14 J size 12{6 "." "40"´"10" rSup { size 8{ +- "14"} } " J"} {} . What temperature is needed?

Got questions? Get instant answers now!

Suppose that the average velocity ( v rms ) size 12{ \( v rSub { size 8{"rms"} } \) } {} of carbon dioxide molecules (molecular mass is equal to 44.0 g/mol) in a flame is found to be 1 . 05 × 10 5 m/s size 12{1 "." "05"´"10" rSup { size 8{5} } " m/s"} {} . What temperature does this represent?

1 . 95 × 10 7 K size 12{ size 11{1 "." "95" times "10" rSup { size 8{7} } `K}} {}

Got questions? Get instant answers now!

Hydrogen molecules (molecular mass is equal to 2.016 g/mol) have an average velocity v rms size 12{v rSub { size 8{"rms"} } } {} equal to 193 m/s. What is the temperature?

Got questions? Get instant answers now!

Much of the gas near the Sun is atomic hydrogen. Its temperature would have to be 1 . 5 × 10 7 K size 12{1 "." 5´"10" rSup { size 8{7} } " K"} {} for the average velocity v rms size 12{v rSub { size 8{"rms"} } } {} to equal the escape velocity from the Sun. What is that velocity?

6 . 09 × 10 5 m/s size 12{ size 11{6 "." "09" times "10" rSup { size 8{5} } `"m/s"}} {}

Got questions? Get instant answers now!

There are two important isotopes of uranium— 235 U size 12{ {} rSup { size 8{"235"} } U} {} and 238 U size 12{ {} rSup { size 8{"238"} } U} {} ; these isotopes are nearly identical chemically but have different atomic masses. Only 235 U size 12{ {} rSup { size 8{"235"} } U} {} is very useful in nuclear reactors. One of the techniques for separating them (gas diffusion) is based on the different average velocities v rms size 12{v rSub { size 8{"rms"} } } {} of uranium hexafluoride gas, UF 6 size 12{"UF" rSub { size 8{6} } } {} . (a) The molecular masses for 235 U size 12{ {} rSup { size 8{"235"} } U} {} UF 6 size 12{"UF" rSub { size 8{6} } } {} and 238 U size 12{ {} rSup { size 8{"238"} } U} {} UF 6 size 12{"UF" rSub { size 8{6} } } {} are 349.0 g/mol and 352.0 g/mol, respectively. What is the ratio of their average velocities? (b) At what temperature would their average velocities differ by 1.00 m/s? (c) Do your answers in this problem imply that this technique may be difficult?

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask