<< Chapter < Page Chapter >> Page >

Making connections: historical note—kinetic theory of gases

The kinetic theory of gases was developed by Daniel Bernoulli (1700–1782), who is best known in physics for his work on fluid flow (hydrodynamics). Bernoulli’s work predates the atomistic view of matter established by Dalton.

Distribution of molecular speeds

The motion of molecules in a gas is random in magnitude and direction for individual molecules, but a gas of many molecules has a predictable distribution of molecular speeds. This distribution is called the Maxwell-Boltzmann distribution , after its originators, who calculated it based on kinetic theory, and has since been confirmed experimentally. (See [link] .) The distribution has a long tail, because a few molecules may go several times the rms speed. The most probable speed v p size 12{v rSub { size 8{p} } } {} is less than the rms speed v rms size 12{v rSub { size 8{"rms"} } } {} . [link] shows that the curve is shifted to higher speeds at higher temperatures, with a broader range of speeds.

A line graph of probability versus velocity in meters per second of oxygen gas at 300 kelvin. The graph is skewed to the right, with a peak probability just under 400 meters per second and a root-mean-square probability of about 500 meters per second.
The Maxwell-Boltzmann distribution of molecular speeds in an ideal gas. The most likely speed v p size 12{v rSub { size 8{p} } } {} is less than the rms speed v rms size 12{v rSub { size 8{"rms"} } } {} . Although very high speeds are possible, only a tiny fraction of the molecules have speeds that are an order of magnitude greater than v rms size 12{v rSub { size 8{"rms"} } } {} .

The distribution of thermal speeds depends strongly on temperature. As temperature increases, the speeds are shifted to higher values and the distribution is broadened.

Two distributions of probability versus velocity at two different temperatures plotted on the same graph. Temperature two is greater than Temperature one. The distribution for Temperature two has a peak with a lower probability, but a higher velocity than the distribution for Temperature one. The T sub two graph has a more normal distribution and is broader while the T sub one graph is more narrow and has a tail extending to the right.
The Maxwell-Boltzmann distribution is shifted to higher speeds and is broadened at higher temperatures.

What is the implication of the change in distribution with temperature shown in [link] for humans? All other things being equal, if a person has a fever, he or she is likely to lose more water molecules, particularly from linings along moist cavities such as the lungs and mouth, creating a dry sensation in the mouth.

Calculating temperature: escape velocity of helium atoms

In order to escape Earth’s gravity, an object near the top of the atmosphere (at an altitude of 100 km) must travel away from Earth at 11.1 km/s. This speed is called the escape velocity . At what temperature would helium atoms have an rms speed equal to the escape velocity?

Strategy

Identify the knowns and unknowns and determine which equations to use to solve the problem.

Solution

1. Identify the knowns: v size 12{v} {} is the escape velocity, 11.1 km/s.

2. Identify the unknowns: We need to solve for temperature, T size 12{T} {} . We also need to solve for the mass m size 12{m} {} of the helium atom.

3. Determine which equations are needed.

  • To solve for mass m size 12{m} {} of the helium atom, we can use information from the periodic table:
    m = molar mass number of atoms per mole . size 12{m= { { size 11{"molar mass"}} over { size 11{"number of atoms per mole"}} } } {}
  • To solve for temperature T size 12{T} {} , we can rearrange either
    KE ¯ = 1 2 m v 2 ¯ = 3 2 kT size 12{ {overline {"KE"}} = { {1} over {2} } m {overline {v rSup { size 8{2} } }} = { {3} over {2} } ital "kT"} {}

    or

    v 2 ¯ = v rms = 3 kT m size 12{ sqrt { {overline {v rSup { size 8{2} } }} } =v rSub { size 8{"rms"} } = sqrt { { {3 ital "kT"} over {m} } } } {}

    to yield

    T = m v 2 ¯ 3 k , size 12{T= { {m {overline {v rSup { size 8{2} } }} } over {3k} } ,} {}
    where k size 12{k} {} is the Boltzmann constant and m size 12{m} {} is the mass of a helium atom.

4. Plug the known values into the equations and solve for the unknowns.

m = molar mass number of atoms per mole = 4 . 0026 × 10 3 kg/mol 6 . 02 × 10 23 mol = 6 . 65 × 10 27 kg size 12{m= { { size 11{"molar mass"}} over { size 11{"number of atoms per mole"}} } = { { size 11{4 "." "0026" times "10" rSup { size 8{ - 3} } " kg/mol"}} over { size 12{6 "." "02" times "10" rSup { size 8{"23"} } " mol"} } } =6 "." "65" times "10" rSup { size 8{ - "27"} } " kg"} {}
T = 6 . 65 × 10 27 kg 11 . 1 × 10 3 m/s 2 3 1 . 38 × 10 23 J/K = 1 . 98 × 10 4 K size 12{T= { { left (6 "." "65" times "10" rSup { size 8{ - "27"} } `"kg" right ) left ("11" "." 1 times "10" rSup { size 8{3} } `"m/s" right ) rSup { size 8{2} } } over {3 left (1 "." "38" times "10" rSup { size 8{ - "23"} } `"J/K" right )} } =1 "." "98" times "10" rSup { size 8{4} } `K} {}

Discussion

This temperature is much higher than atmospheric temperature, which is approximately 250 K ( 25 º C size 12{ \( –"25"°C} {} or 10 º F ) size 12{–"10"°F \) } {} at high altitude. Very few helium atoms are left in the atmosphere, but there were many when the atmosphere was formed. The reason for the loss of helium atoms is that there are a small number of helium atoms with speeds higher than Earth’s escape velocity even at normal temperatures. The speed of a helium atom changes from one instant to the next, so that at any instant, there is a small, but nonzero chance that the speed is greater than the escape speed and the molecule escapes from Earth’s gravitational pull. Heavier molecules, such as oxygen, nitrogen, and water (very little of which reach a very high altitude), have smaller rms speeds, and so it is much less likely that any of them will have speeds greater than the escape velocity. In fact, so few have speeds above the escape velocity that billions of years are required to lose significant amounts of the atmosphere. [link] shows the impact of a lack of an atmosphere on the Moon. Because the gravitational pull of the Moon is much weaker, it has lost almost its entire atmosphere. The comparison between Earth and the Moon is discussed in this chapter’s Problems and Exercises.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask