<< Chapter < Page Chapter >> Page >

Find g From data on a falling object

The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are on a hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt beneath you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics laboratory course. An object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall a known distance is measured. See, for example, [link] . Very precise results can be produced with this method if sufficient care is taken in measuring the distance fallen and the elapsed time.

Figure has four panels. The first panel (on the top) is an illustration of a ball falling toward the ground at intervals of one tenth of a second. The space between the vertical position of the ball at one time step and the next increases with each time step. At time equals 0, position and velocity are also 0. At time equals 0 point 1 seconds, y position equals negative 0 point 049 meters and velocity is negative 0 point 98 meters per second. At 0 point 5 seconds, y position is negative 1 point 225 meters and velocity is negative 4 point 90 meters per second. The second panel (in the middle) is a line graph of position in meters versus time in seconds. Line begins at the origin and slopes down with increasingly negative slope. The third panel (bottom left) is a line graph of velocity in meters per second versus time in seconds. Line is straight, beginning at the origin and with a constant negative slope. The fourth panel (bottom right) is a line graph of acceleration in meters per second squared versus time in seconds. Line is flat, at a constant y value of negative 9 point 80 meters per second squared.
Positions and velocities of a metal ball released from rest when air resistance is negligible. Velocity is seen to increase linearly with time while displacement increases with time squared. Acceleration is a constant and is equal to gravitational acceleration.

Suppose the ball falls 1.0000 m in 0.45173 s. Assuming the ball is not affected by air resistance, what is the precise acceleration due to gravity at this location?

Strategy

Draw a sketch.

The figure shows a green dot labeled v sub zero equals zero meters per second, a purple downward pointing arrow labeled a equals question mark, and an x y coordinate system with the y axis pointing vertically up and the x axis pointing horizontally to the right.

We need to solve for acceleration a size 12{a} {} . Note that in this case, displacement is downward and therefore negative, as is acceleration.

Solution

1. Identify the knowns. y 0 = 0 ; y = –1 .0000 m ; t = 0 .45173 ; v 0 = 0 size 12{v rSub { size 8{0} } =0} {} .

2. Choose the equation that allows you to solve for a size 12{a} {} using the known values.

y = y 0 + v 0 t + 1 2 at 2 size 12{y=y rSub { size 8{0} } +v rSub { size 8{0} } t+ { {1} over {2} } ital "at" rSup { size 8{2} } } {}

3. Substitute 0 for v 0 size 12{v rSub { size 8{0} } } {} and rearrange the equation to solve for a size 12{a} {} . Substituting 0 for v 0 size 12{v rSub { size 8{0} } } {} yields

y = y 0 + 1 2 at 2 . size 12{y=y rSub { size 8{0} } + { {1} over {2} } ital "at" rSup { size 8{2} } "." } {}

Solving for a size 12{a} {} gives

a = 2 y y 0 t 2 . size 12{a= { {2 left (y - y rSub { size 8{0} } right )} over {t rSup { size 8{2} } } } "." } {}

4. Substitute known values yields

a = 2 ( 1 . 0000 m – 0 ) ( 0 . 45173 s ) 2 = 9 . 8010 m/s 2 , size 12{a= { {2 \( - 1 "." "0000 m–0" \) } over { \( 0 "." "45173 s" \) rSup { size 8{2} } } } = - 9 "." "8010 m/s" rSup { size 8{2} } ,} {}

so, because a = g size 12{a= - g} {} with the directions we have chosen,

g = 9 . 8010 m/s 2 . size 12{g=9 "." "8010 m/s" rSup { size 8{2} } } {}

Discussion

The negative value for a size 12{a} {} indicates that the gravitational acceleration is downward, as expected. We expect the value to be somewhere around the average value of 9 . 80 m/s 2 size 12{9 "." "80 m/s" rSup { size 8{2} } } {} , so 9 . 8010 m/s 2 size 12{9 "." "8010 m/s" rSup { size 8{2} } } {} makes sense. Since the data going into the calculation are relatively precise, this value for g size 12{g} {} is more precise than the average value of 9 . 80 m/s 2 size 12{9 "." "80 m/s" rSup { size 8{2} } } {} ; it represents the local value for the acceleration due to gravity.

Applying the science practices: finding acceleration due to gravity

While it is well established that the acceleration due to gravity is quite nearly 9.8 m/s 2 at all locations on Earth, you can verify this for yourself with some basic materials.

Your task is to find the acceleration due to gravity at your location. Achieving an acceleration of precisely 9.8 m/s 2 will be difficult. However, with good preparation and attention to detail, you should be able to get close. Before you begin working, consider the following questions.

What measurements will you need to take in order to find the acceleration due to gravity?

What relationships and equations found in this chapter may be useful in calculating the acceleration?

What variables will you need to hold constant?

What materials will you use to record your measurements?

Upon completing these four questions, record your procedure. Once recorded, you may carry out the experiment. If you find that your experiment cannot be carried out, you may revise your procedure.

Once you have found your experimental acceleration, compare it to the assumed value of 9.8 m/s 2 . If error exists, what were the likely sources of this error? How could you change your procedure in order to improve the accuracy of your findings?

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask